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Why Study Dynamos?

Generate magnetic �eld on Earth, Sun.
Lots of unexplained phenomena - Sunspots, Geomagnetic Reversals,
prediction of Geomagnetic �eld decline, 11 year maunder period

Figure 1: Maunder Butter�y sunspots plot
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What makes up a Dynamo

Convective �ow of conducting �uids.
Dynamo action - induction equation.
Navier Stokes + Maxwell equations.

Figure 2: Simulation of Earth Magnetic Field. Glatzmaiers and Roberts, 19951

1Glatzmaier and Roberts, �Computer simulation of a geomagnetic �eld reversal�.
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Numerical Simulations

Dynamo problem is di�cult to simulate.

Sti� nonlilnear equations.

Huge range of time and length scales.

Simulations ran in very unrealistic parameter regimes.

Parameter Earth Simulations

Ekman 10−15 10−7 − 10−3

Rayleigh 1024 106 − 109

Magnetic Prantl 10−6 0.1− 10
Prandtl 10−2 10−1 − 1
Magnetic Reynolds 103 40− 3000
Reynolds 109 10− 5000

Table 1: Roberts and King, 20132/ Schae�er, 20173

2Roberts and King, �On the genesis of the Earth's magnetism�.
3Schae�er et al., �Turbulent geodynamo simulations: a leap towards Earth's core�.
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Motivation

To gain more speed, we need to utilise more processors.
Traditional codes are parallel in space, but reach a scaling limit.
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Parallel in Time

Extra direction for parallelization.

Works with existing spatial parallelization.

Compute the start of the simulation at the same time as the end of
the simulation*.

Figure 3: https://parallel-in-time.org/

Andrew Clarke (University of Leeds) Parareal Dynamo September 2, 2019 6 / 31



Parareal

Parareal Algorithm: Lions et al, 20014

Uk+1
n+1 = G∆t(U

k+1
n )︸ ︷︷ ︸

Coarse integrator

+ Fδt(Ukn)︸ ︷︷ ︸
Fine integrator

− G∆t(U
k
n)︸ ︷︷ ︸

Coarse integrator

(1)

Parareal Solver:

Usual solver F with usual time step δt

Parallelize in time by using an iterative approach, which combines
F with an approximation G.
G is called the coarse solver, and usually has a bigger timestep ∆t.

Solution U found at iteration k + 1 using the algorithm above.

4Lions, Maday, and Turinici, �Résolution d'EDP par un schéma en temps pararéel�.
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Parareal Example

Uk+1
n+1 = G∆t(U

k+1
n )︸ ︷︷ ︸

Coarse integrator

+ Fδt(Ukn)︸ ︷︷ ︸
Fine integrator

− G∆t(U
k
n)︸ ︷︷ ︸

Coarse integrator

(2)
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Parareal Performance

Theoretical speed up:

s =

[(
1 +

Iterations

processors

)
Rc
Rf

+
Iterations

processors

]−1

(3)

where Rc is coarse runtime and Rf is the �ne runtime over one time
slice. Speed up is bounded by

s ≤ min

{
Processors

Iterations
,
Rf
Rc

}
, (4)

Rule of thumb: if you have Rc just less than Rf , low number of
iterations, if Rc <<< Rf , then high number of iterations.
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Parareal Example

Very fast coarse solver - lots of iterations, less time for each iteration

Figure 4: Time spent for each processor (10 processors, RF /RC large)
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Parareal Example

More accurate coarse solver - less iteration, but more time required for
each iteration

Figure 5: Time spent for each processor (10 processors, RF /RC large)
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Numerics/ Computing Details

Spatial Discretisation:

Pseudospectral collocation method.

Fourier series in x and z (kinematic), Chebyshev polynomials in z
(Rayleigh-Bénard)

Dedalus Spectral Solver5

Open source python solver.

Optimized parallel libraries: FFTW, ATLAS/MKL, MPI

Timestepping

Implicit-Explicit Runge-Kutta

Linear/ high order terms treated implicitly

Non-linear terms treated explicitly

5Burns et al., �Dedalus: A Flexible Framework for Numerical Simulations with Spectral Methods�.
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Dynamo Problem

Full (Boussinesq) magnetohydrodynamic problem

∂u

∂t
+ (u · ∇)u = −ρ−1

0 ∇p+ αgT + j ×B + ν∇2u (5)

∂T

∂t
+ u · ∇T = κ∇2T (6)

∂B

∂t
= ∇× (u×B) + η∇2B. (7)

∇ · u = 0 (8)

∇ ·B = 0 (9)
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Rayleigh-Bénard Convection

Simpli�cation - ignore magnetic �eld.

∂u

∂t
+ (u · ∇)u = −ρ−1

0 ∇p+ αgT +����XXXXj ×B + ν∇2u (10)

∂T

∂t
+ u · ∇T = κ∇2T (11)

((((
((((

(((
(((hhhhhhhhhhhhhh

∂B

∂t
= ∇× (u×B) + η∇2B (12)

∇ · u = 0 (13)

((((
(hhhhh∇ ·B = 0 (14)
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Rayleigh Bénard Convection

Rayleigh = 106, Prandtl = 1
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Rayleigh Bénard Convection

Rayleigh = 109, Prandtl = 1

Andrew Clarke (University of Leeds) Parareal Dynamo September 2, 2019 16 / 31



Rayleigh-Bénard: Setting Fine Solver

Nusselt number:

Calculate at multiple z planes.

Max relative defect should be below 1%, Mound and Davies, 20176.

Energy balance:

Compare buoyancy production with viscous dissipation.

Check that they match within 1%, Mound and Davies, 20178.

Time Averages:

Average over at least 100 turnover times - until statistically steady.

Boundary Layers:

6 points: Verzicco and Camussi (2003)7, 7 points: Stevens (2010)8.

6Mound and Davies, �Heat transfer in rapidly rotating convection with heterogeneous thermal
boundary conditions�.

7Verzicco and Camussi, �Numerical experiments on strongly turbulent thermal convection in a slender
cylindrical cell�.

8Stevens, Verzicco, and Lohse, �Radial boundary layer structure and Nusselt number in
Rayleigh�Bénard convection�.
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Rayleigh-Bénard: Resolutions

Convergence of solution with space.
Red lines indicate the threshold required of solution.
Fine solution set to 32(Nz) x 64(Nx)

(a) Nusselt and Energy Balance Error (b) Number of points in TBL.
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Rayleigh-Bénard: Parareal Results 1

Clear di�erence between coarse/�ne data.

Figure 7: How time series data looks for increasing iteration number.
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Rayleigh-Bénard: Parareal Convergence

Parareal convergence of simulations. (8 time slices)

Figure 8: Time averaged values compared with high resolution study
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Rayleigh-Bénard: Parareal Scaling

Scaling Results:
Ra = 105, Pr = 1, Fine Res = (64× 32), coarsening factor = 4.
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Kinematic Dynamo

Prescribe u

((((
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∂u

∂t
+ (u · ∇)u = −ρ−1

0 ∇p+ αgT + j ×B + ν∇2u (15)

��
���

���
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∂T

∂t
+ u · ∇T = κ∇2T (16)

∂B

∂t
= ∇× (u×B) + η∇2B. (17)

∇ · u = 0 (18)

∇ ·B = 0 (19)

u = u(t,x) (20)
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Kinematic Dynamo

Subset of full dynamo problem - prescribed �ow

Non-dimensionalised Induction Equation

∂B

∂t
= ∇× (u×B) +

1

Rm
∇2B (21)

Rm = UL/η is the magnetic Reynolds number.
Characteristic Length scale L, characteristic velocity U , magnetic
di�usivity η, characteristic time τ = L/U .

Pre-de�ned velocity �eld u = (ux, uy, uz), unknown magnetic �eld

Divergence free
∇ ·B = ∇ · u = 0
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Galloway Proctor Dynamo

Magnetic Reynolds = 300
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Galloway Proctor9

Time dependant opposing cylindrical �ow. Periodic in y and z.

u = sin(z + sinωt) + cos(y + cosωt), cos(z + sinωt), sin(y + cosωt).
(22)

(a) Contours of By (b) Contours of Bx

9Galloway and Proctor, �Numerical calculations of fast dynamos in smooth velocity �elds with realistic
di�usion�.
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Fine solver - Kinematic Dynamo

Fine Spatial resolution Ny = Nz = NF .
Time step δt

(a) Spatial convergence for
di�erent Rm

(b) Temporal convergence for
di�erent Rm

Figure 10: Galloway Proctor Growth Convergence
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Coarse solver - Kinematic Dynamo

Coarse Spatial resolution Ny = Nz = NC .
Time step increased in line with stability.

(a) Speed up (b) Parareal convergence

Figure 11: Parareal Convergence for di�erent Coarse resolutions (NF = 160)
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Results - Kinematic Dynamo

Coarse time step much larger than �ne time step, creates a larger
di�erence in computational complexity.
This gives better opportunity for overall speed up.

(a) Speed up (b) E�ciency

Figure 12: Galloway-Proctor �ow, Rm = 3000. Total number of processers
against speed up/ e�ciency
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Performance With changing Rm

At Rm = 3 and 300, we only parallelise using parareal.
At Rm = 3000, we parallelise in time and space, so total e�ciency
and parareal e�ciency are di�erent.
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Thank you for listening
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Future work:

Further Study of Rayleigh-Bénard Convection

pySDC + Dedalus, to implement PFASST parallel in time
algorithm

Release Parareal solver add-on for Dedalus to �work� with any
equation.
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