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Anelastic plane layer convection

T = TT s = 0
z = d

T = TB
s = ∆Ŝ

z = 0

Perfect gasg

Plane layer, gravity vertical,
non-rotating.

No-slip, fixed entropy boundaries.

Perfect gas p = RρT , p pressure,
ρ density and T temperature.

Anelastic approximation is valid when entropy drop across layer is
small,

∆Ŝ

cp
� 1,

cp is specific heat at constant pressure, assumed constant.

In stars, anelastic approximation often valid in the deep interior,
but not near the surface, where convection is inefficient.
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Entropy relations

Entropy for a perfect gas is

s = cv ln

[
p

ργ

]
− s0

γ = cp/cv ratio of specific heats: cv specific heat at constant
volume. Assume γ = 5/3. Differential form:

ds = cv
dp

p
− cp

dρ

ρ
,

so if ds is small,
dp

p
≈ γdρ

ρ

This is the adiabatic relation, so the layer is close to adiabatic.
The adiabatic reference state is the solution of

dp̄

dz
= −g ρ̄, p̄ = R ρ̄T̄ ,

dp̄

d ρ̄
=
γp̄

ρ̄
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The adiabatic reference state

The solution of these equations is a polytrope

T = TB

(
1− θz

d

)
, ρ = ρB

(
1− θz

d

)3/2
, p̄ = pB

(
1− θz

d

)5/2
.

where d is layer depth, TT and TB top and bottom temperatures,
subscript B being value at bottom and subscript T top.
z = 0 is bottom of layer, z = d top of layer. Constants are defined
by

gd

cp
= ∆T = TB − TT > 0, θ =

∆T

TB
, Γ =

TB

TT
=

1

1− θ
.

Γ = TB
TT

is a measure of how compressible the layer is.
Boussinesq is Γ→ 1, Γ large is very compressible. The number of
density scale heights (defined at the top of the layer) that fit into
the layer is Nρ = 1.5(Γ− 1).

Anelastic adiiabatic state 4/28



The conduction state

The adiabatic reference state has constant entropy, so it doesn’t
satisfy sB = ∆Ŝ , sT = 0. The conduction state, which is different
from the adiabatic reference state, is the solution of

dp̃

dz
= −g ρ̃, p̃ = R ρ̃T̃ , ∇2T̃ = 0,

the third equation being different. The solution is also a polytrope,
but with a slightly different polytropic index.

T̃ = TB

(
1− θ̃ z

d

)
, ρ̃ = ρB

(
1− θ̃ z

d

)m̃
, p̃ =

gdρB

θ̃ (m̃ + 1)

(
1− θ̃ z

d

)m̃+1
,

∆̃T = TB − T̃T > 0, θ̃ =
∆̃T

TB
, m̃ =

gd

R∆̃T
− 1.

In this conduction state we take TB to be the same as before, but
T̃T isn’t necessarily the same as TT .
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The conduction state entropy

The small anelastic parameter ε is now defined as

ε = θ̃
m̃ + 1− γm̃

γ
= − d

TB

[(
dT̃

dz

)
B

+
g

cp

]
� 1,

and the entropy in the conduction state is

εs̃ = cv ln
p̃

ρ̃γ
+ const =

εcp
θ

ln
(

1− θ z
d

)
+ const,

correct to O(ε), and m̃ = m − 2.5ε/θ. Since the boundaries have
fixed entropy, the entropy at the boundaries in the conduction
state defines the entropy drop across the layer for all Rayleigh
numbers, so

∆Ŝ =
εcp
θ

ln Γ = ε∆S ,

so ε is determined by the small entropy drop across the boundaries.
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Anelastic equations

The anelastic equations are derived by setting the full
thermodynamic hatted quantities to

p̂ = p̄ + εp, ρ̂ = ρ̄+ ερ, T̂ = T̄ + εT ,

with
u ∼ (εgd)1/2, t ∼

(εg
d

)−1/2
, ŝ = εs,

putting them into the full equations of motion, subtracting off the
reference state variables and ignoring any O(ε2) terms.

∂u

∂t
+ (u · ∇)u = −∇

(
p

%̄

)
+

g

cp
s êz +

µ

ρ̄

[
∇2u +

1

3
∇ (∇ · u)

]
,

∇ · (%̄u) = 0,

ρ̄T̄

[
∂s

∂t
+ u · ∇s

]
= k∇2T + µ

[
q + ∂jui∂iuj − (∇ · u)2

]
,

p

p̄
=
ρ

ρ̄
+

T

T̄
, s = cv

p

p̄
− cp

ρ

ρ̄
, cp − cv = R.
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Boussinesq, Anelastic, Fully compressible?

Here the dissipation

q = (∂jui )(∂jui ) +
1

3
(∇ · u)2 .

Boussinesq equations: Γ→ 1 limit of the anelastic equations.

ρ̄ and T̄ become constants, entropy s/cp is replaced by
temperature term αT .

∇ · ρ̄u = 0 replaced by ∇ · u = 0. The viscous heating terms in the
energy equation are negligible.

Fully compressible equations have u the same order as the sound
speed ∼ (gd)1/2, whereas in anelastic convection sound waves are
removed because u ∼ (εgd)1/2.
∂ρ/∂t back in mass conservation equation. Timesteps have to be
small enough to resolve sound waves. Toroidal-poloidal expansion
no longer useful.
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Alternative formulations for anelastic convection

When solved numerically, the full thermodynamic variables can be
found by adding εT , ερ etc. to the reference state values.

Decoupled entropy formulation: In a turbulent regime, k∇2T
can reasonably be replaced by ∇ · ρ̄T̄κs∇s, and this decouples the
entropy and the temperature, a significant simplification. Not done
here, because boundary layers may be laminar. Constant entropy
boundaries required for full decoupling.

Constant entropy boundaries used here: T̂ = T̄ + εT , and T
won’t be zero on the boundaries. To leading order, T̄ has the
reference state value, but departures εT from the reference state
won’t satisfy T = 0 on the boundaries.

With constant temperature boundary conditions, T = 0 would be
imposed, but then entropy would fluctuate on the boundaries.
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Adiabatic reference state or conduction reference state?

Some authors use the adiabatic state as the reference state, so
T̂ = T̄ + εT , but some use the conduction state as the reference
state.

With the conduction state, T̂ = T̃ + εT , etc.

Does it matter? Both give the same answers for the hatted
variables, but the answers for T , ρ etc are different in the two
cases, because T̂ and T̃ differ at O(ε).

Need to be very careful comparing results from the different
approaches! The corrections are however easy to work out and
only depend on z .
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Superadiabatic heat flux

Total heat flux carried by conduction is
−kdT̂/dz = −kdT̄/dz − kεdT/dz but we ignore the constant
heat flux conducted down the adiabat.
In spherical geometry the divergence of the conducted flux is
non-zero, and then the conducted flux can be a heat source/sink
for the convection.
We call T the superadiabatic temperature, and define the
conducted part of the superadiabatic heat flux

εF super
cond = −εk dT

dz

∣∣∣
z=0

, so F super
cond = −k dT

dz
.

At the boundaries, all the heat is carried by conduction, so

F super = −k dT
dz

∣∣∣
z=0

= −k dT
dz

∣∣∣
z=d

.

The heat conducted down the non-convecting conduction state is

εFcond = k

[
−dT̃

dz
− g

cp

]
=
εkTb

d
.
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Nusselt and Rayleigh number in anelastic convection

Nusselt number in anelastic convection defined as the ratio of the
superadiabatic heat flux to the heat conducted down the
conduction state superadiabatic gradient,

Nu =
F super

Fcond
=

F superd

kTB
,

so Nu is close to unity near onset, and is large in fully developed
convection. For fixed entropy boundary conditions, the Rayleigh
number is defined as

Ra =
g∆Sd3ρ2

B

µk
=

cp∆S∆Td2ρ2
B

µk
.

Note that small superadiabatic temperature gradient does not
imply small Rayleigh number Ra, since the diffusion coefficients can
be small, in fact to get Ra ∼ O(1) in the limit ε→ 0 we must have

k

ρBcp
∼
(
gd3ε

)1/2
,

µ

ρB
∼
(
gd3ε

)1/2
.
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High Rayleigh number convection
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< s >h

Schematic entropy profile Numerical entropy profile

Entropy is the conserved quantity with small diffusion and small
dissipation, so it is the well-mixed quantity (not temperature).

Large Rayleigh number, so expect well-mixed turbulent flow in the
interior, with asymptotically thin boundary layers near the
boundaries. Horizontally averaged entropy < s >h shown.

Mouloud Kessar’s numerical solution uses entropy diffusion, but
otherwise similar. Ra = 106, Pr = 1, Γ = 1.94, ρB/ρT = 2.71.
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Boundary layers

The thickness of the top and bottom thermal boundary layers is
δthi , with i = B or i = T . In the Boussinesq limit they are the
same, but in anelastic convection they are different. Jumps in
entropy across the layers are ∆Si . Clearly

∆SB + ∆ST = ∆S .

Not much vertical motion in boundary layers, so expect hydrostatic
boundary layers

(∆p)i ≈
g

cp
ρi∆siδ

th
i ,

which leads to

(∆T )i
Ti

≈
(∆s)i
cp

(
1 + θ

δthi
d

TB

Ti

)
.

For thin boundary layers (incompressible b.l.)
(∆T )i
Ti
≈ (∆s)i

cp
.
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Superadiabatic temperature profile

Horizontally averaged superadiabatic temperature <T (z)>h.

< uz>h= 0,
d

dz

〈
ρ̄u2

z

〉
h

+
d 〈p̂〉h
dz

= −g 〈ρ̂〉 ,

constant entropy interior ⇒ p̂ = K ρ̂γ , p̂ = R ρ̂T̂ ,

d<T>h

dz
= − 1

cpρ̂

d

dz
< ρ̄u2

z >, ∆Tvel =

∫ d−δthT

δthB

<ρ̄u2
z >

d

dz

(
1

cpρ̄

)
dz > 0.

So temperature slope must be subadiabatic in the interior.
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Energy balance integral

Multiply Navier-Stokes by ρ̄u and integrate over the whole volume,

g

cp
||ρ̄uzs|| = µ||q||, q = (∂jui )(∂jui ) +

1

3
(∇ · u)2 .

where || || is volume average, assuming statistically stationary
state. Integrating energy equation from 0 to z

F super = −k dT
dz

∣∣∣
z=0

=
〈
ρ̄T̄ uzs

〉
h
− k

dT

dz
+

g

cp

∫ z

0
〈ρ̄uzs〉h dz

− µ

∫ z

0
〈q〉dz − 2µ

[〈
uz

duz
dz

〉
h

− m∆T

T̄d

〈
u2
z

〉
h

]
.

Letting z → d we get flux in equals flux out,

F super = −k dT
dz

∣∣∣
z=0

= −k dT
dz

∣∣∣
z=d

,

For incompressible b.l.s we deduce

F super ∼ kTB∆SB
δthB cp

=
kTT∆ST
δthT cp

.
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Entropy balance integral

Divide energy equation by T̄ and integrate from 0 to z .

〈ρ̄uzs〉h = − k

TB

d

dz
〈T 〉h

∣∣∣
z=0

+
k

T̄

d

dz
〈T 〉h

∣∣∣
z

+

∫ z

0

µ

T̄
〈q〉h dz

−
∫ z

0

k∆T

T̄ 2d

d

dz
〈T 〉h dz +

∫ z

0

µ

T̄
〈∂j(∂i (uiuj))− 2∂j(uj(∂iui ))〉h dz .

Terms in red are small when the boundary layers are thin, and the
viscous dissipation term is dominated by the boundary layer
contributions. As z → d we get overall entropy balance

k

TB

d

dz
〈T 〉h

∣∣∣
z=0
− k

TT

d

dz
〈T 〉h

∣∣∣
z=d
∼
∫ d

0

µ

T̄
〈q〉h dz .

This gives the estimate from the boundary layers

F super

(
1

TT
− 1

TB

)
∼ µ

[
U2
B

TBδ
ν
B

+
U2
T

TT δ
ν
T

]
where UB , UT are horizontal velocities just outside the b.l.s.
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Prandtl number effects: boundary layer nesting

δth

δν

i

i

Ui

Ui
δ
δν

th
i

i

Pr > 1 Pr < 1
Pr = µcp/k . Pr > 1, thermal boundary layer inside viscous layer,
Pr < 1 viscous layer inside thermal layer. Ui is large scale flow
speed in bulk, δνi , δthi viscous and thermal b.l. thicknesses.

Large Pr : Velocity at edge of thermal b.l. = δthi Ui/δ
ν
i .

Advection balances diffusion in the boundary layers,

ρiU
2
i

d
∼ µUi

(δνi )2
,

δthi
δνi

ρicpUiT

d
∼ kT

(δthi )2
, ⇒

δνi
δthi
∼ Pr1/3.

Similarly, for low Pr , δνi

δthi
∼ Pr1/2.

Prandtl number effects 18/28



Wind of turbulence

Horizontally averaged horizontal velocity profiles:
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Pr=1, Ra=6× 106, Γ = 4.64: Pr=10, Ra=3× 106, Γ = 4.64
Grossmann and Lohse 2000 noted that in Boussinesq turbulent
convection there are large scale components of the flow which
maintain the viscous and thermal boundary layers.
Numerical solutions suggest this happens in anelastic high Rayleigh
number convection, with well-defined UB and UT , but the ratio
ru = UT/UB is no longer unity.
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The velocity ratio

Multiply the equation of motion by ρ̄u and horizontally average
over the bulk interior, ignoring the small viscous term in the bulk,
to get

1

2

∂

∂z

(
ρ̄
〈
uzu

2
〉
h

)
≈ g

cp
〈ρ̄uzs〉h .

If viscous dissipation is mainly in boundary layers, entropy flux
〈ρ̄uzs〉h should be constant in the bulk, and all three components
of velocity similar in the bulk. So just outside the boundary layers,

∂

∂z

(
ρ̄
〈
uzu

2
〉
h

)
|T ≈

∂

∂z

(
ρ̄
〈
uzu

2
〉
h

)
|B .

The vertical scale heights in the bulk do vary with the pressure
scale height, so d/dz ∼ 1/Hi , giving

ρTu
3
T

HT
∼
ρBu

3
B

HB
⇒ r3

u ∼ Γ1/2 ⇒ ru ∼ Γ1/6.
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The boundary layer ratios

Three key ratios:

• Bulk horizontal velocity ratio ru = UT/UB

• Boundary layer thickness ratio rδ = δthT /δ
th
B = δνT/δ

ν
B

• Entropy jump ratio rs = ∆ST/∆SB

Energy balance gives

kTB∆SB
δthB cp

=
kTT∆ST
δthT cp

⇒ rs = Γrδ

Boundary layer balance gives

ρiU
2
i

d
∼ µUi

(δνi )2
⇒ rur

2
δ ∼

ρB
ρT

= Γ3/2
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Determining the ratios

The three ratio equations are

rs = Γrδ, rU rδ
2 = Γ3/2, ru = Γ1/6,

giving

ru = Γ1/6, rδ = Γ2/3, rs = Γ5/3, rT = Γ2/3

which fit the numerical data reasonably well.
e.g. at Pr = 1, Ra = 3× 106, Γ = 1.94, the numerics gets
ru = 1.11 (predicted 1.12), rδ = 1.54 (predicted 1.56), rs = 2.93
(predicted 3.03)
Taking the horizontal boundary layer length scale varying with Hi

gives rδ = Γ1/6, which doesn’t fit so well. Data is of course only at
moderately high Ra.
Higher Γ gets the right trends, but the agreement between theory
and numerics isn’t quite as good. Maybe due to incompressible
boundary layer assumption breaking down, or to difficulties with
numerics.
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Numerical results
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Γ = 1.94, Ra = 3× 106, Pr = 1: Γ = 2.92, Ra = 3× 106, Pr = 1
Horizontally averaged entropy profiles. With Γ = 2.92, ratios
rS = 5.90 (predicted 5.97), rδ = 2.13 (predicted 2.04)
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√
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x + u2

y . 1.941/6 = 1.2, ru = 1.1:

2.921/6 = 1.20, ru = 1.07.
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Conclusions from numerical results

• Reasonable support for the theoretical ratio estimates.

• Difficult to get long runs at Ra large enough for thin boundary
layers, particularly at large Γ.

• For Γ < 10, rδ results support horizontal length-scale d in the
boundary layers (as in Boussinesq case), but for Γ > 10 rδ grows
less rapidly than Γ2/3, suggesting a switch to a pressure scale
height horizontal length scale.
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Flow visualisation

Entropy slices at fixed z (Horizontal plane). Left z = 0.1
(bottom), right z = 0.9 (top). Ra = 106, Pr = 0.7, Γ = 1.94.
Narrow sheet-like downdraughts near the top, more diffuse near
bottom. Small scale structures occur near top, but so do large
scale features, which may explain why at moderate Γ the
horizontal length scales controlling the boundary layers are similar.
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Nusselt number - Rayleigh number scalings

Equations needed

Nu =
F superd

kTB
∼ ∆SBd

cpδthB
=

∆Sd

(1 + rs)cpδthB
=

d

δthB

Γ ln Γ

(1 + rs)(Γ− 1)

valid fror incompressible boundary layers.

Ra =
cp∆S∆Td2ρ2

B

µk
.

The entropy balance integral,

F super

(
1

TT
− 1

TB

)
∼ µ

[
U2
B

TBδ
ν
B

+
U2
T

TT δ
ν
T

]
.

The viscous boundary layer equation, assuming moderate Γ

ρ̄ (u · ∇)uh = µ∇2uh ⇒ ρB
U2
B

d
∼ µUB

(δνB)2
,

Prandtl number relation δνB/δ
th
B ∼ Pr1/3 for large Pr , Pr = µcp/k .
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Nusselt number - Rayleigh number formula

Entropy balance becomes

µk2Ra

c2
p(1 + rs)TTd2ρ2

Bδ
th
B

∼
µU2

b

TBδ
ν
B

[
1 +

Γr2
u

rδ

]
.

Use the boundary layer balance to eliminate UB in favour of δνB ,

µk2RaPr1/3

c2
p(1 + rs)TTρ

2
Bd

2
∼ µ

TB

(
µd

ρB(δνB)2

)2 [
1 +

Γr2
u

rδ

]
.

Now eliminate d/δνB in terms of Nu to get

Nu = Ra1/4Pr−1/12 Γ ln Γ

Γ− 1
(1 + rs)−5/4

[
1 +

Γr2
u

rδ

]−1/4

,

which is the scaling when Pr ≥ 1, the boundary layers are
incompressible and the dissipation is in the boundary layers.
Mostly true in simulations.
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Conclusions

• High Ra anelastic convection leads to a well mixed entropy zone
bounded by thin layers.

• Assuming, like Grossmann and Lohse (2000), the boundary layers
are controlled by advection from large scale horizontal flows just
outside the boundary layers, we can derive scaling laws for Nu and
the flow magnitude in terms of Ra. Entropy dissipation integral is
crucial.

• Progress made on the ratio problem, but still work to do.

• Range of different scalings possible, depending on Pr , whether
top b.l. is incompressible, and where the dominant dissipation lies.

• Agrees with the numerical simulations we have.
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