Rapidly Rotating Convection with Nonlinear EoS

Daniel Lecoanet (Princeton)

Louis Couston, Michael Le Bars, Benjamin Favier (IRPHE, Marseille)

Funded by: ERC, PCTS

Rapidly Rotating Convection with Nonlinear EoS

Daniel Lecoanet (Princeton)

Louis Couston BAS/DAMTP Michael Le Bars, Benjamin Favier (IRPHE, Marseille)

Funded by: ERC, PCTS

How does convection interact with stable stratification?

Diagram by Ben Brown

Earth's Atmosphere

Stratosphere

Troposphere

Alexander & Barnet (2006)

Earth's Atmosphere Renaud et al (2019) Disruption 2032Observations Z \overline{u} 28 $(m. s^{-1})$ $(km)_{24}$ 30 20 2000200420082012 2016t (year) Troposphere $12\,\mathrm{km}$ Alexander & Barnet (2006) $400\,\mathrm{km}$

Ice cap

Asthenosphere Rigid mantle

Stiffer mantle

Outer core

Inner core

(solid)

(liquid)

earth drawn to scale

Crust Continental crust (granitic) Oceanic crust (basaltic)

Continent Continent

Atmosphere Hydrosphere wikipedia (Kelvinsong) Ice cap

Asthenosphere Rigid mantle

> earth drawn to scale

Crust Continental crust (granitic) Oceanic crust (basaltic)

Stiffer mantle

core

Continent Continent

Atmosphere Hydrosphere

wikipedia (Kelvinsong)

Equation of State

Equation of State of water

Equation of State of water

Water Experiment

Le Bars et al. 2015

Dimensions: 20 x 4 x 35 cm³ Ra ~ 2x10⁷ - 2x10⁸

Water Experiment

Dimensions: 20 x 4 x 35 cm³ Ra ~ 2x10⁷ - 2x10⁸

Water Experiment

Dimensions: 20 x 4 x 35 cm³ Ra ~ 2x10⁷ - 2x10⁸

Equation of State of water

$$\partial_t \boldsymbol{u} + \boldsymbol{\nabla} p - \Pr \nabla^2 \boldsymbol{u} = -\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + \operatorname{Ra} \Pr \rho(T) \boldsymbol{e}_z$$
$$\partial_t T - \nabla^2 T = -\boldsymbol{u} \cdot \boldsymbol{\nabla} T$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$$

$$\rho = \begin{cases} -T & T \le 0\\ ST & T > 0 \end{cases}$$

DEDALUS

A FLEXIBLE FRAMEWORK FOR SPECTRALLY SOLVING DIFFERENTIAL EQUATIONS

LEARN MORE

dedalus-project.org

The team so far

Australian Government

Australian Research Council

Daniel Lecoanet (Princeton) Keaton Burns (MIT) Jeff Oishi (Bates) Ben Brown (Colorado) Geoff Vasil (Sydney)

x

Lower Pr=v/k

Lower Pr=v/k

Quasi-Biennial Oscillation

Quasi-Biennial Oscillation

Interface z=1

 $F_w \sim F_c \frac{1}{N\tau_c} \left(\omega\tau_c\right)^{-13/2} \left(k_\perp H\right)^4$

Stellmach et al (2014)

Stellmach et al (2014)

stress-free!!

Stellmach et al (2014)

 ω_z

Guervilly et al (2018)

1. Require stress-free BC's

2. Inverse cascade to box size

Stratification stress-free, no strat

Stratification stress-free, no strat no-slip, no strat

Stratification stress-free, no strat no-slip, no strat

Stratification

 $oldsymbol{u}_h$

strong strat

Stratification

 $oldsymbol{u}_h$

strong strat medium strat

Stratification

 $oldsymbol{u}_h$

strong strat medium strat weak strat

 $b' = b - b_{\infty}$ $\partial_r p' = f v_\theta \quad \partial_z p' = b'$ $\oint_{\mathcal{C}} \nabla p' \cdot d\boldsymbol{\ell} = 0$

$$\begin{aligned} \partial_r p' &= f v_\theta \quad \partial_z p' = b' \\ \oint_{\mathcal{C}} \nabla p' \cdot d\ell &= 0 \\ \oint_d \nabla p' \cdot d\ell &= \int f v_\theta dr > 0 \end{aligned}$$

 $b' = b - b_{\infty}$

 $\partial_r p' = f v_\theta \quad \partial_z p' = b'$ $\ell f v_{\theta} \sim h N^2 \delta$

 $b' = b - b_{\infty}$

 ∂_r

$$p' = f v_{\theta} \quad \partial_z p' = b' \qquad b' = b - b_{\infty}$$
$$\ell f v_{\theta} \sim h N^2 \delta \qquad Ro = \frac{v_{\theta}}{f\ell}$$

 $b' = b - b_{\infty}$ $\partial_r p' = f v_\theta \quad \partial_z p' = b'$ $Ro = \frac{v_{\theta}}{f\ell}$ $\ell f v_{\theta} \sim h N^2 \delta$ $\frac{\ell^2}{h\delta} \sim Ro \frac{N^2}{f^2}$

 $b' = b - b_{\infty}$ $\partial_r p' = f v_\theta \quad \partial_z p' = b'$ $Ro = \frac{v_{\theta}}{f\ell}$ $\ell f v_{\theta} \sim h N^2 \delta$ $\frac{\ell^2}{h\delta} \sim Ro \frac{N^2}{f^2}$ $\frac{\ell}{h} \sim \frac{N}{f} \sqrt{Ro}$

$$\partial_r p' = f v_\theta \quad \partial_z p' = b' \qquad b' = b - b_\infty$$

$$\ell f v_\theta \sim h N^2 \delta \qquad Ro = \frac{v_\theta}{f\ell}$$

$$\frac{\ell^2}{h\delta} \sim Ro \frac{N^2}{f^2}$$

$$\boxed{\frac{\ell}{h} \sim \frac{N}{f} \sqrt{Ro}}$$

$$\frac{\ell}{h} \sim \frac{N}{f} \sqrt{Ro}$$

r

1. Fix ell. Then height of vortex cap is α ell

67

1. Fix ell. Then height of vortex cap is α ell

2. Fix maximum height H. Then vortex will saturate at ell~H/α

Conclusions

- Stratified layer above rapidly rotating convection -> LSV w/ no-slip BCs
- 2. Stratified layer can saturate LSV size

3. Aspect ratio $\frac{\ell}{h} \sim \frac{N}{f} \sqrt{Ro}$