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Figure 1: (a) Picture of the experimental set-up, showing the tank, the two
thermistor probes mounted on a vertical linear stage, and the green laser
light sheet for PIV measurements. In this picture, the front and bottom foam
insulating plates and the top copper plate have been removed for visualiza-
tion. (b) Example of a time-averaged vertical temperature profile measured
several hours after initializing an experiment. The black (red) dot shows
schematically the location where the longterm temperature fluctuations are
measured in the convective zone (stratified zone); see an example of temper-
ature measurements in figure 2. (c) Schematic of the expected flow with a
large convective cell plus turbulent fluctuations in the lower convective zone
and internal waves propagating from the interface into the upper stratified
zone.
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Rapidly Rotating Convection 

An interesting feature of the GT regime is the formation
of large-scale barotropic vortices driven by an upscale
transport of kinetic energy [7,20]. The effect is most clearly
observed in the stress-free case (Fig 3). The formation of
large scale vortices in rotating convection has recently been
observed in simulations at larger E [21,22], where the
large-scale energy accumulates predominantly in cyclonic
structures. Such symmetry breaking is predicted to be
absent in the asymptotic small Rossby number case [20].
Indeed, our DNS reveals the generation of both, strong
cyclonic and anticyclonic vortices, which shows that
symmetry slowly tends to be restored with decreasing
Rossby number. The formation of large scale coherent
vortices is inhibited in DNS that employ no-slip bounda-
ries, similar to the results of [23].
Our results thus suggest that at E ¼ 10−7, the bulk

dynamics shows clear signs of asymptotic behavior, while
viscous boundary layers strongly increase the heat transfer
efficiency, leading to a different scaling behavior than
predicted asymptotically. The mechanical boundary con-
ditions thus exert a controlling influence on the heat
transfer scaling, a result that is unexpected for the low
Ekman number considered here. Studies of the linear
problem [8] suggest that the onset of convection becomes
largely independent of the mechanical boundary conditions
for E ≤ 10−6. While nonlinear contributions from Ekman
pumping are known to increase the heat transport at

moderate Ekman numbers [24], it is generally expected
that this effect becomes small in the low E regime, as both
the Ekman layer thickness and the associated secondary
flow should decrease with OðE1=2Þ, such that the Ekman
layer finally becomes passive [6,10,11]. It is remarkable
that even at E ¼ 10−7, where the Ekman layer covers only
about 0.1% of the layer depth, an increase by almost an
order of magnitude in the heat transfer is observed.
The effects of no-slip boundaries can be modeled using

boundary conditions that parametrize fluid pumping into
and out of the linear Ekman layers [25]. Pumping is added
to otherwise stress-free boundary conditions by enforcing
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in DNS, where ωz denotes vertical vorticity. The plus sign
applies to the lower and the minus sign to the upper
boundary, respectively. Note that this choice isolates the
Ekman pumping effects, while neglecting the viscous
dissipation in the boundary layer that plays a central
role in theories of nonrotating convection [26]. Figure 4
shows the results obtained. Both the heat transfer and the
interior temperature gradients found in the DNS are well
captured by the pumping parametrization [Figs. 4(a), 4(b)].
Panels 4(c) and 4(d) show profiles of the rms horizontal and
vertical velocity and of conductive and advective heat
transfer for the special case Pr ¼ 7, fRa ¼ 20. The profiles
line up well within the bulk, and reveal a substantial

(a) (b)

(c) (d)

FIG. 3 (color online). Formation of large-scale, barotropic
vortices of both signs of vorticity in the GT regime for stress-
free boundaries at E ¼ 10−7, fRa ¼ 90, Pr ¼ 1. Shown is (a)
vertical vorticity, (b) horizontal kinetic energy, (c) temperature
anomaly at z ¼ 0.99, and (d) vertically averaged vertical vor-
ticity. Units are κ=H2, κ2=H2, ΔT, and κ=H2, respectively.

(a) (b)

(c) (d)

FIG. 2 (color online). Thermal anomaly θ ¼ T − T̄ in DNS at
E ¼ 10−7 with no-slip boundary conditions. (a) Cellular regime,
fRa ¼ 10, Pr ¼ 1, (b) convective Taylor columns, fRa ¼ 25,
Pr ¼ 7, (c) plumes, fRa ¼ 70, Pr ¼ 7, and (d) geostrophic turbu-
lence, fRa ¼ 90, Pr ¼ 1. For better visibility, the domain has been
stretched horizontally by a factor of 4.5. θ is scaled with ΔT in
all cases.
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Figure 1: Meridional and equatorial cross-sections of a snapshot of the axial vorticity in the 3D
model for Ek = 10�8, Ra = 2 ⇥ 1010, and Pr = 10�2. Streamlines have been superimposed in
the equatorial plane. The kinetic energy of the velocity projected on a quasi-geostrophic state
(hu

s

i , hu
�

i , z� hu
s

i) (where the angle brackets denote an axial average) is within 0.2% of the
total kinetic energy.

the rotation axis in accordance with the Proudman-Taylor constraint. This approximation is
well supported by the results of the 3D model shown in Figure 1.

For the low Ekman numbers studied here, convection is always in a turbulent state, even
near onset,11,13 and Re � 103. The convection takes the form of vortical plumes that are
radially elongated on scales much shorter than the outer radius (Figure 2). At large radius,
the steepening of boundary slope leads to rapid changes in the column height, which inhibit
convection.7 The dynamics there mainly consists of Rossby waves, which appear as elongated
vortices with a prograde tilt (Figure 2e). Their radial velocity is relatively small so conduc-
tion dominates the heat transport in the outer part of the equatorial plane.14 Hereafter we
solely consider the dynamics of the inner convective region, which grows wider with increasing
Rayleigh number (Ra, which measures the strength of the buoyancy driving with respect to
dissipative e↵ects). The azimuthal lengthscale of the convective flows decreases notably with
radius (Figures 2f-g) to minimise the changes in the column height. At lower Ek , the scale of
the convective flow is visibly smaller. We find that the convective lengthscale is controlled by
the Rossby number, rather than by any viscous e↵ect. The flows shown in Figures 1 and 2
are snapshots taken once the system has reached a statistically steady state, and are entirely
unlike the linear viscous mode at the convection onset, which consists of drifting columns with
a narrow azimuthal lengthscale that scales as Ek1/3.15,16 The convective lengthscale increases
with the buoyancy driving as seen on the power spectra of the total and radial kinetic energies
in Figure 3. The peak of the radial kinetic energy moves to smaller wavenumber for increasing
Ra, as can be observed for the two di↵erent Rayleigh numbers shown at Ek = 10�10, and is
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Guervilly et al (2018)
Figure 2: Snapshots of the radial velocity in a quarter of the equatorial plane during the
statistically steady phase for a) Ek = 10�8, Ra = 2.5 ⇥ 1010 (3D model), b) Ek = 10�9,
Ra = 2.7⇥ 1011 (QG model), c) Ek = 10�10, Ra = 6.3⇥ 1012 (QG model) and d) Ek = 10�11,
Ra = 5.25 ⇥ 1013 (QG model). Close-ups of the equatorial plane are shown in e-g for the
same parameters as in d; e shows the outer conduction-dominated region where the dynamics is
dominated by Rossby waves, and f-g the inner convective region. The Prandtl number is 10�2

in all cases. The colorbars give the radial velocity normalised by the viscous velocity scale (i.e.
corresponding to a Reynolds number).
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Favier et al (2019)

Subcritical turbulent condensate in rapidly rotating RBC
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lines in figure 1(a), indicating that there is no significant energy transfer from the
3D fluctuations to the 2D flow. For larger amplitudes however, typically A& 800, we
observe an initial decay of K2D

followed by an approximately linear increase until
the energy eventually saturates at very long times. Note that close to the transition
threshold, see case A = 875 for example, it is not yet clear whether the vortex will
grow or decay. In view of figure 1(a), which shows that the large-scale vortex has not
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Figure 5: Snapshots of the depth-averaged axial vorticity (bottom panel) and profile of the
mean u

x

as a function of y (top panel) for (a) L
y

= 2, (b) L
y

= 4 and (c) L
y

= 8.

the flanks. The plot of u
z

shows that the convective structures can be elongated along the
x-direction in the shear regions but that there is no discernible box-size vertical flow associated
with the presence of the jets. Figure 5 shows snapshots of h!

z

i

z

and of the profile of hu
x

i

xz

in
the saturated stage for L

y

= 8 and for the intermediate cases L
y

= 2 and 4. The unidirectional
flow consists of one jet for L

y

= 2 and two jets for L

y

= 4. No persistent unidirectional flow
along y is produced.

The presence of a unidirectional flow might be expected in this system by analogy with 2D
turbulence, in which the upscale energy transfer feeds the largest mode available (e.g. Bouchet
& Simonnet, 2009). However, as noted by (Frishman et al., 2017) in a study of forced 2D
turbulence, the largest mode argument does not explain why there is more than one stable
jet for L

y

= 4 and L

y

= 8. In all the cases studied, LSVs coexist with the jets. The LSVs
are advected by the mean flow u

x

and always remain at the same location in y. At most two
cyclones can coexist in the same cyclonic band and they remain in the flanks of their respective
jets, with no cyclone sharing its y location. The cyclones are never observed at the location
corresponding to hu

x

i

xz

= 0, which is the region of maximum shear @

y

hu

x

i

xz

. Furthermore,
no large-scale anticyclone is visible in the bands of anticyclonic vorticity; hence the asymmetry
between large-scale cyclones and anticyclones is present for L

y

> L

x

, as it is when L

y

= L

x

.
The mean flows themselves however are not asymmetric, since cyclonic and anticyclonic bands
have comparable width (and hence comparable amplitude).

3.2 How much horizontal anisotropy is required to drive the jets?

Since large-scale motions consist mostly of horizontal flows, we follow (Guervilly et al., 2014) in
using the parameter � = Re2/(3Re2

z

) to determine their presence; � > 1 indicates the presence of

8

u
x

u
x

u
x

!z !z

!z

Guervilly & Hughes (2018)
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4

III. RESULTS

A. Importance of stably-stratified layers

We first show in figure 1 three-dimensional snapshots of the horizontal velocity amplitude V =
p
u2 + v2 at steady

state. In fully-convective simulations without a stable layer, a LSV emerges when the top boundary is free-slip (figure
1A⇤), but not when the top boundary is no-slip (cf. figure 1A). Thus, boundary friction inhibits upscale energy
transfers in fully-convective fluids, to the point that, as shown by previous studies [41], large-scale barotropic vortices
cannot be obtained in current DNS (i.e. which are limited to relatively high viscosity) with no-slip boundaries. With
a stable layer (H 6= 0), we find that one or several LSVs always emerge for the same convective parameters as in
figure 1A, even with a no-slip top boundary (cf. one LSV in figure 1B and several smaller LSVs in figure 1C). This
means that stable layers protect upscale energy transfers and LSVs against boundary friction, which is a fundamental
and important result for planetary cores and potentially for Earth’s oceans and subsurfaces oceans. It shows that
subadiabatic layers of planetary cores and oceans’ pycnoclines can play an important role in the dynamics of LSVs
by protecting them against boundary friction at e.g. the core-mantle boundary or the seabed. It may be noted
that LSVs are expected to be robust against no-slip boundaries in reduced models of fully-convective fluids assuming
asymptotically-large rotation and turbulence intensity [42]. Therefore, a stable layer tampering boundary friction
may not be always necessary, but it still broadens the domain of existence of LSVs to cases accessible to DNS and
possibly laboratory experiments [43]. We recall that the bottom boundary is free-slip in all our simulations, since
LSVs cannot emerge in a convective fluid directly adjacent to a no-slip bottom boundary for our choice of parameters.

FIG. 1. Volume rendering of the horizontal velocity amplitude V in a mixed convective and stably-stratified fluid heated from
below. The results are shown at the steady state for simulations (A⇤) C⇤, (A) C, (B) S0.5 and (C) W0.5 of table I. Dark (light)
orange colors show large (small) velocities. Dark (light) blue colors highlight the turbulent (stable) fluid region in (B-C). In
(B) the LSV is wide and weakly-penetrating while in (C) there are several tall LSVs that penetrate far into the stable fluid.

B. Horizontal saturation

LSVs in nature grow to a finite size, i.e. saturate, either because there is a physical mechanism that prevents
their growth beyond a certain point or because they reach the boundaries of the geophysical or astrophysical fluid
domain. Previous studies of fully-convective Cartesian fluid domains with free-slip boundaries have always reported
LSVs growing to the box size [23, 24]. This is a severe limitation to the application of existing numerical local models
to natural cases, since the box size in periodic simulations is not a real physical quantity. Here, we demonstrate that
boundary friction through a stably-stratified layer provides a natural saturation mechanism for LSVs, and that the
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B. Horizontal saturation

LSVs in nature grow to a finite size, i.e. saturate, either because there is a physical mechanism that prevents
their growth beyond a certain point or because they reach the boundaries of the geophysical or astrophysical fluid
domain. Previous studies of fully-convective Cartesian fluid domains with free-slip boundaries have always reported
LSVs growing to the box size [23, 24]. This is a severe limitation to the application of existing numerical local models
to natural cases, since the box size in periodic simulations is not a real physical quantity. Here, we demonstrate that
boundary friction through a stably-stratified layer provides a natural saturation mechanism for LSVs, and that the
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FIG. 1. Volume rendering of the horizontal velocity amplitude V in a mixed convective and stably-stratified fluid heated from
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B. Horizontal saturation

LSVs in nature grow to a finite size, i.e. saturate, either because there is a physical mechanism that prevents
their growth beyond a certain point or because they reach the boundaries of the geophysical or astrophysical fluid
domain. Previous studies of fully-convective Cartesian fluid domains with free-slip boundaries have always reported
LSVs growing to the box size [23, 24]. This is a severe limitation to the application of existing numerical local models
to natural cases, since the box size in periodic simulations is not a real physical quantity. Here, we demonstrate that
boundary friction through a stably-stratified layer provides a natural saturation mechanism for LSVs, and that the
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FIG. 2. (A) Integral length scale L0 (proxy for LSV diameter) in the middle of the convection zone as a function of time
t for the simulations of table I. Blue, green, orange colors denote weak, moderate, strong stratifications, and thicker lines
correspond to thicker stable fluid layers. Dashed lines indicate results obtained with a free-slip condition on the top boundary
and the dotted line shows the box size L = 4. (B-D) Snapshots of horizontal velocity V in the middle of the convection zone
at steady-state for simulations M2, M1, M0.5.

of the vertical temperature gradient with radius results in a negative temperature anomaly, T 0 = T �T1, in the LSV
centre. This anomaly is shown by the light red-coloured cone in figure 3A and is small, as is the buoyancy anomaly
b0 = T 0 < 0, in most of the convective layer. As a result, the LSV roughly satisfies the Taylor-Proudman theorem,
i.e. is depth-invariant, in the convective layer (cf. equation (3)). The negative temperature anomaly increases with
height, such that at and above the base of the stably-stratified layer, it translates into a positive and potentially large
buoyancy anomaly b0 = �ST 0. This positive buoyancy anomaly drives the decay of the azimuthal velocity with height
above the black dashed line according to the thermal wind balance (equation (3)), which is why the stratified LSV has
a half-dome shape. When S increases, i.e. the stratification becomes stronger, b0 increases, such that the aspect ratio
h/` of a LSV must decrease in order to satisfy the thermal wind balance. This explains why in a strongly-stratified
fluid LSVs appear as wide weakly-penetrating columns (cf. figure 1B), while in a weakly-stratified fluid they appear
as tall narrow columns (figure 1C).

Figures 3B,C show the vertical vorticity for simulations M2 (figure 3B) and M0.5 (figure 3C), i.e. which have a
deep and shallow stratified layer, respectively, but same parameters otherwise. As described above, the stratified
vortex cap has a positive buoyancy anomaly in both cases (as shown by the gray contours), which is balanced by a
vorticity decay with height above the convective-stable interface (dashed line). However, while the penetration of the
vortex cap is small compared to the stable layer thickness H in figure 3B, the penetration is large enough compared
to H in figure 3C such that the LSV is confined vertically. The maximum vorticity does not change significantly
between the two simulations and the buoyancy anomaly is smaller in figure 3C than in figure 3B (cf. in-line numbers).
Thus, |@

z

v
✓

| is larger for a vertically-confined LSV than for a vertically-unconfined LSV, which means that confined
LSVs must decrease in diameter (compared to their unconfined counterparts), i.e. such that |@

r

b0| increases, in order
to maintain thermal wind balance. As a result, boundary friction makes the LSVs saturate naturally in general and
in particular in figure 3C, because it imposes a sharp vorticity decay that can only be balanced by a reduction of the
LSV diameter. It can be noted that the horizontal narrowing of vertically-confined LSVs does not apply when the
top boundary is free-slip since in this case the vorticity doesn’t decay any quicker than when it is unconfined.

strong strat

uh
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at steady-state for simulations M2, M1, M0.5.
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FIG. 3. (A) Schematic of the axisymmetric structure of LSVs obtained in DNS with `, h and � the LSV diameter, penetration
depth and restratification depth. The stratified vortex cap is the part of the LSV that is above the convective-stable interface
(black dashed line) and is highlighted by a solid white line. The red cone highlights the region where the temperature anomaly
T 0 < 0. (B-C) Map of vertical vorticity Ek⇣/Pr in a cylindrical coordinates system centred on the vortex core after time
and azimuthal averaging for simulations M2 and M0.5, respectively (cf. table I). The solid lines with grey color scale show
isocontours of buoyancy anomaly b0 > 0. The red solid line is a contour of constant vorticity.

D. Aspect ratio of the stratified vortex cap

FIG. 4. (A) Aspect ratio h/` of the stratified vortex cap against the theoretical prediction (5) for ↵. (B) LSV radius ` as
a function of H/↵. The solid line shows that the radius of saturated LSVs follows the same trend as the maximum radius
`
max

= H/(2↵) predicted for LSVs that are confined vertically. LSVs that are not confined vertically have ` < `
max

and
saturate at the box size (cf. three rightmost symbols shown as circles).

The aspect ratio of the stratified vortex cap, ↵ = h/`, is a function of the normalized stratification strength N/f ,
with N = fEkN/Pr the dimensional buoyancy frequency, and the Rossby number of the LSV, i.e. Ro = Ek(v0

✓

/Pr)/`
with v0

✓

the maximum azimuthal velocity at the base of the stratified vortex cap. An approximate expression for
↵(Ro,N/f) can be derived from the hydrostatic and cyclo-geostrophic equations, which are slightly more relevant in

`

h

⇠ N

f

p
Ro

⇠ N

f

p
Ro



63

`

h

⇠ N

f

p
Ro Vortex Cap



64

`

h

⇠ N

f

p
Ro Vortex Cap

h < 2



65

Vortex Cap`

h

⇠ N

f

p
Ro

h < 2 h >
1

2



66

7

FIG. 3. (A) Schematic of the axisymmetric structure of LSVs obtained in DNS with `, h and � the LSV diameter, penetration
depth and restratification depth. The stratified vortex cap is the part of the LSV that is above the convective-stable interface
(black dashed line) and is highlighted by a solid white line. The red cone highlights the region where the temperature anomaly
T 0 < 0. (B-C) Map of vertical vorticity Ek⇣/Pr in a cylindrical coordinates system centred on the vortex core after time
and azimuthal averaging for simulations M2 and M0.5, respectively (cf. table I). The solid lines with grey color scale show
isocontours of buoyancy anomaly b0 > 0. The red solid line is a contour of constant vorticity.
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FIG. 4. (A) Aspect ratio h/` of the stratified vortex cap against the theoretical prediction (5) for ↵. (B) LSV radius ` as
a function of H/↵. The solid line shows that the radius of saturated LSVs follows the same trend as the maximum radius
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and
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FIG. 3. (A) Schematic of the axisymmetric structure of LSVs obtained in DNS with `, h and � the LSV diameter, penetration
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and azimuthal averaging for simulations M2 and M0.5, respectively (cf. table I). The solid lines with grey color scale show
isocontours of buoyancy anomaly b0 > 0. The red solid line is a contour of constant vorticity.
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Conclusions
1. Stratified layer above rapidly 
rotating convection -> LSV w/ no-slip 
BCs

2. Stratified layer can saturate LSV 
size

3. Aspect ratio `
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