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Formulation of the problem
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Equations
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Assumptions and reference state

where we have assumed

µ = const, k = const, g = const, Qrad = 0, (2)

p = ρRT , s = cv ln
p

ργ
. (3)

DIFFUSIVE REFERENCE STATE:

T̃ = T̃B

(
1− θ̃

z

d

)
, ρ̃ = ρ̃B

(
1− θ̃

z

d

)m
, (4a)

s̃ = cp
m+1− γm

γ
ln
(
1− θ̃

z

d

)
+ const, (4b)

where

m =
gd

R4̃T
−1, θ̃ =

∆T̃

T̃B

, ∆T̃ = T̃B − T̃T . (5)
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Notation

Let us introduce a strati�cation parameter

Γ̃ =
T̃B

T̃T

=
1

1− θ̃
> 1, (6)

and a measure of small departure from adiabaticity

ε =
d

T̃B

(
∆T̃

d
− g

cp

)
> 0, ε � 1. (7)
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Incompressible boundary layers

Directly from the state equation, we can calculate a relation

between pressure, temperature and entropy jumps across boundary

layers
(4p′)i
p̃i

=
γ

γ−1

[
(4T ′)i

T̃i

− (4s)i
cp

]
+O

(
ε
2
)
.

(i = T (top) or B (bottom)).
The pressure jump is due to weak buoyancy in BL's, therefore

(4T ′)i
T̃i

≈ (4s)i
cp

(
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δth,i

d
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)
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(
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d

)
. (8)

We assume, that starti�cation not strong enough, to be visible in

boundary layers

θ̃
δth,T

d

T̃B
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d
� 1.
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Vertical pro�le of entropy
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Vertical pro�le of temperature �uctuation
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Vertical pro�le of total temperature
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De�nitions

De�nitions of the Nusselt, Rayleigh and Reynolds numbers

Nu =
FS(z = 0)

F̃S
≈ (4T ′)B d

εT̃Bδth,B

, (9)

Ra =
g4 s̃d3ρ̃2

B

µk
≈

cp4 s̃4 T̃ d2ρ̃2
B

µk
, (10)

ReB =
UBd ρ̃B

µ
, ReT =

UTd ρ̃T

µ
. (11)
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Ratios

Furthermore, we de�ne

rs =
(∆s)T
(∆s)B

= Γ̃rT , rT =
(∆T ′)T
(∆T ′)B

,

rδ =
δth,T

δth,B
=

δν ,T

δν ,B
,

rU =
UT

UB
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Boundary layer thickness

Because

(∆s)B + (∆s)T = (∆s)B (1+ rs) = ∆s̃ = cpε
Γ̃

Γ̃−1
ln Γ̃,

we can relate (∆T ′)B to ∆s̃ and from the de�nition of Nu obtain

δth,B

d
≈ Γ̃ ln Γ̃

(1+ rs)
(

Γ̃−1
)Nu−1,

rδ
def.
=

δth,T

δth,B
≈ Γ̃−1rs = rT .

K. A. Mizerski1, C. A. Jones2, M. Kessar3 Anelastic convection with viscous dissipation in the bulk



Estimates of ratios

Next we balance mean inertia against the work of the buoyancy

1

2ρ̃

∂

∂z

(
ρ̃
〈
uzu

2
〉
h

)
≈ g

cp

〈
uzs
′〉
h
,

so that

cp
g

U3
T

Dρ,T
≈
[〈
uzs
′〉
h

]
T
,

cp
g

U3
B

Dρ,B
≈
[〈
uzs
′〉
h

]
B
.

We need to be able to compare the advective �ux at the top and

bottom !!!
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Estimates of superadiabatic heat �ux

FS(z = 0)≈−k
d

dz

(
T̃ +

〈
T ′
〉
h
−Tad

)
+ ρ̃T̃

〈
uzs
′〉
h

+
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d

∫ z

0
ρ̃
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h

dz−µ
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0
〈q〉h dz ,
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d
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)
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〈
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h
−µ

∫ z

0

T̃B

T̃
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The second relation taken at z = d , by the use of

FS (z = 0) = FS(z = d) leads to

FS (z = 0)

(
1

T̃T

− 1

T̃B

)
= µ

∫ d

0

1

T̃
〈q〉h dz . (13)
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Estimates of ratios (2) - VD in the bulk

FS(z = 0)≈ ρ̃T T̃T

[〈
uzs
′〉
h

]
T
≈ ρ̃B T̃B

[〈
uzs
′〉
h

]
B
, (14)

since at the bottom the work of the buoyancy force and viscous

dissipation integral are negligible and at the top, accroding to the

global balance g 〈ρ̃uzs ′〉/cp = µ 〈q〉 they are approximately equal

and thus cancel out. Consequently

[〈uzs ′〉h]T
[〈uzs ′〉h]B

≈ ρ̃B T̃B

ρ̃T T̃T

= Γ̃m+1 ≈
U3
T

U3
B

Dρ,B

Dρ,T
, (15)

thus

rU = Γ̃m/3, (16)

rδ = rT = Γ̃m/3, rs = Γ̃m/3+1. (17)
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Example m=3/2

rU = Γ̃1/2, as opposed to rU = Γ̃1/6,

rδ = rT = Γ̃1/2, as opposed to rδ = rT = Γ̃2/3,

rs = Γ̃3/2 as opposed to rs = Γ̃5/3

Green estimates correspond to VD in boundary layers
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Scaling laws (1)

µ

∫ d

0
〈q〉h dz ≈ µ

∫ d−δth,T

δth,B

〈q〉h dz ≈ ρ̃BU
3
B =

µ3

ρ̃2
BL

3
Re3B , (18)

since the viscous dissipation is dominant in the bulk, where it is

expected to balance the nonlinear inertial term. Moreover, since

r3U = Γ̃m in the current case, the maximal estimate is obtained

either by taking ρ̃BU
3
B or equivalently ρ̃TU

3
T ≈ ρ̃BU

3
B .

This leads to

RaNuPr−2 ≈ Γ̃ ln Γ̃

Γ̃−1
Re3B . (19)

and
δth,T

δth,B
≈ rs

Γ̃
≈ Γ̃m/3 > 1. (20)

K. A. Mizerski1, C. A. Jones2, M. Kessar3 Anelastic convection with viscous dissipation in the bulk



Scaling laws (2)

For

1� Γ̃� (PrRa)1/(2m+6) ,

We get

Nu ≈ ln Γ̃

Γ(2m+6)/5
Pr1/5Ra1/5,

ReB = Γ̃2m/3ReT ≈ Γ̃−(2m+6)/15Pr−3/5Ra2/5,

and consequently

δth,B

L
≈ Γ̃(m+3)/15Pr−1/5Ra−1/5,
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Scaling laws - comparison, m=3/2

Nu ≈ ln Γ̃

Γ9/5
Pr1/5Ra1/5;

Nu ≈ ln Γ̃

Γ̃2
Pr1/8Ra1/4,

ReB = Γ̃ReT ≈ Γ̃−3/5Pr−3/5Ra2/5;

ReB = Γ̃4/3ReT ≈ Γ̃−2/3Pr−3/4Ra1/2,
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Scaling laws - comparison, m=3/2

δth,B

d
≈ Γ̃(m+3)/15Pr−1/5Ra−1/5;

δth,B

d
≈ Γ̃(2m+1)/12Pr−1/8Ra−1/4,

δth,T

δth,B
≈ Γ̃1/2 > 1;

δth,T

δth,B
≈ Γ̃2/3 > 1,
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Summary

Total vertical heat �ux varies with height due to work of the

buoyancy and viscous heating.

Thicknesses of boundary layers increase with Γ̃ and

δth,T > δth,B .

The velocities are greater at the top,

The latter two imply, that the top boundary layer is more

prone to instability and is more likely to become compressible.
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