

Spectra of magnetic energy and secular variation in a dynamo model of Jupiter

Yue-Kin Tsang

School of Mathematics, University of Leeds

Chris Jones (Leeds)

Let's start on Earth...

- core-mantle boundary (CMB): sharp boundary between the non-conducting mantle and the conducting outer core
 ⇒ dynamo action entirely confined within the outer core
- dynamo radius $r_{\rm dyn}$: top of the dynamo region $\approx r_{\rm cmb}$
- one way to deduce r_{cmb} from observation at the surface: magnetic energy spectrum

Gauss coefficients g_{lm} and h_{lm}

● Outside the dynamo region, $r > r_{dyn}$:

$$\boldsymbol{j}=\boldsymbol{0}$$

$$abla imes \mathbf{B} = \mu_0 \, \mathbf{j} = \mathbf{0} \implies \mathbf{B} = -\nabla \Psi$$

 $abla \cdot \mathbf{B} = 0 \implies \nabla^2 \Psi = 0$

 $a = radius \ of \ Earth$

• Consider only internal sources,

$$\Psi(r,\theta,\phi) = a \sum_{l=1}^{\infty} \sum_{m=0}^{l} \left(\frac{a}{r}\right)^{l+1} \hat{P}_{lm}(\cos\theta) \left(\frac{g_{lm}}{\cos m\phi} + \frac{h_{lm}}{\sin m\phi}\right)$$

 \hat{P}_{lm} : Schmidt's semi-normalised associated Legendre polynomials

• g_{lm} and h_{lm} can be determined from magnetic field measured at the planetary surface $(r \approx a)$

The Lowes spectrum

 \blacksquare Average magnetic energy over a spherical surface of radius r

$$E_B(r) = \frac{1}{2\mu_0} \frac{1}{4\pi} \oint |\boldsymbol{B}(r,\theta,\phi)|^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi$$

• Inside the source-free region $r_{\rm dyn} < r < a$,

$$2\mu_0 E_B(r) = \sum_{l=1}^{\infty} \left[\left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left(g_{lm}^2 + h_{lm}^2\right) \right]$$

J Lowes spectrum (magnetic energy as a function of l):

$$R_{l}(r) = \left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left(g_{lm}^{2} + h_{lm}^{2}\right)$$
$$= \left(\frac{a}{r}\right)^{2l+4} R_{l}(a) \qquad (\text{downward continuation})$$

Estimate location of CMB using the Lowes spectrum

• downward continuation from a to $r_{\rm cmb}$ through the mantle (j = 0):

$$\ln R_l(a) = 2\ln\left(\frac{r_{\rm cmb}}{a}\right)l + 4\ln\left(\frac{r_{\rm cmb}}{a}\right) + \ln R_l(r_{\rm cmb})$$

white source hypothesis: turbulence in the core leads to an even distribution of magnetic energy across different scales l,

 $R_l(r_{\rm cmb})$ is independent of l

Interior structure of Jupiter

- low temperature and pressure near surface \Rightarrow gaseous molecular H/He
- extremely high temperature and pressure inside \Rightarrow liquid metallic H
- core?
- \checkmark transition from molecular to metallic hydrogen is continuous
- conductivity $\sigma(r)$ varies smoothly with radius rAt what depth does dynamo action start?

Lowes spectrum from the Juno mission

- Juno's spacecraft reached Jupiter on 4th July, 2016
- currently in a 53-day orbit, measuring Jupiter's magnetic field (and other data)
- $R_l(r_J)$ up to l = 10 from latest measurement (8 flybys)
- Lowes' radius: $r_{\text{lowes}} \approx 0.85 r_{\text{J}}$ $(r_{\text{J}} = 6.9894 \times 10^7 \text{m})$

Lowes spectrum from the Juno mission

- Juno's spacecraft reached Jupiter on 4th July, 2016
- currently in a 53-day orbit, measuring Jupiter's magnetic field (and other data)
- $R_l(r_J)$ up to l = 10 from latest measurement (8 flybys)
- Lowes' radius: $r_{\rm lowes} \approx 0.85 \, r_{\rm J}$ $(r_{\rm J} = 6.9894 \times 10^7 \, {\rm m})$

Questions: with the conductivity profile $\sigma(r)$ varying smoothly,

- meaning of r_{lowes} ? $r_{\text{lowes}} = r_{\text{dyn}}$?
- white source hypothesis valid?
 - concept of "dynamo radius" $r_{\rm dyn}$ well-defined?

A numerical model of Jupiter

- spherical shell of radius ratio $r_{\rm in}/r_{\rm out} = 0.0963$ (small core)
- **9** rotating fluid with electrical conductivity $\sigma(r)$ driven by buoyancy
- convection forced by secular cooling of the planet
- \blacksquare anelastic: linearise about a hydrostatic adiabatic basic state $(\bar{\rho}, \bar{T}, \bar{p}, \dots)$
- \blacksquare dimensionless numbers: Ra, Pm, Ek, Pr

 $\nabla \cdot (\bar{\rho} \boldsymbol{u}) = 0$

$$\begin{split} \frac{Ek}{Pm} \left[\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \right] + 2\hat{\boldsymbol{z}} \times \boldsymbol{u} &= -\nabla \Pi' + \frac{1}{\bar{\rho}} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} - \left(\frac{EkRaPm}{Pr} \right) S \frac{\mathrm{d}\bar{T}}{\mathrm{d}r} \hat{\boldsymbol{r}} + Ek \frac{\boldsymbol{F}_{\nu}}{\bar{\rho}} \\ \frac{\partial \boldsymbol{B}}{\partial t} &= \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) - \nabla \times (\eta \nabla \times \boldsymbol{B}) \\ \bar{\rho} \bar{T} \left(\frac{\partial S}{\partial t} + \boldsymbol{u} \cdot \nabla S \right) + \frac{Pm}{Pr} \nabla \cdot \boldsymbol{\mathcal{F}}_{Q} &= \frac{Pr}{RaPm} \left(Q_{\nu} + \frac{1}{Ek} Q_{J} \right) + \frac{Pm}{Pr} H_{S} \end{split}$$

Boundary conditions: no-slip at $r_{\rm in}$ and stress-free at $r_{\rm out}$, $S(r_{\rm in}) = 1$ and $S(r_{\rm out}) = 0$, electrically insulating outside $r_{\rm in} < r < r_{\rm out}$. (Jones 2014)

A numerical model of Jupiter

- spherical shell of radius ratio $r_{\rm in}/r_{\rm out} = 0.0963$ (small core)
- rotating fluid with electrical conductivity $\sigma(r)$ driven by buoyancy
- convection forced by secular cooling of the planet
- anelastic: linearise about a hydrostatic adiabatic basic state $(\bar{\rho}, \bar{T}, \bar{p}, ...)$
- \checkmark dimensionless numbers: Ra, Pm, Ek, Pr
- a Jupiter basic state: CA. Jones / Icarus 241 (2014) 148-159

$Ra = 2 \times 10^7, \ Ek = 1.5 \times 10^{-5}, \ Pm = 10, \ Pr = 0.1$

radial magnetic field, $B_r(r, \theta, \phi)$

Where does the current start flowing?

average current over a spherical surface of radius r

$$\mu_0 \boldsymbol{j} = \nabla \times \boldsymbol{B}$$
$$\boldsymbol{j}_{\rm rms}^2(r,t) \equiv \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} |\boldsymbol{j}|^2 \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi$$

• $j_{\rm rms}$ drops quickly but smoothly in the transition region, not clear how to define a characteristic "dynamo radius"

Magnetic energy spectrum, $F_l(r)$

average magnetic energy over a spherical surface:

$$E_B(r) = \frac{1}{2\mu_0} \frac{1}{4\pi} \oint |\boldsymbol{B}(r,\theta,\phi)|^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi$$

• Lowes spectrum: recall that if j = 0, we solve $\nabla^2 \Psi = 0$, then

$$2\mu_0 E_B(r) = \sum_{l=1}^{\infty} \left[\left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left(g_{lm}^2 + h_{lm}^2\right) \right] = \sum_{l=1}^{\infty} R_l(r)$$

● generally, for the numerical model, $\mathbf{B} \sim \sum_{lm} b_{lm}(r) Y_{lm}(\theta, \phi)$,

$$2\mu_0 E_B(r) = \frac{1}{4\pi} \oint |\boldsymbol{B}(r,\theta,\phi)|^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi = \sum_{l=1}^{\infty} \boldsymbol{F}_l(r)$$

 $\boldsymbol{j}(r,\theta,\phi) = \boldsymbol{0} \text{ exactly} \implies R_l(r) = F_l(r)$

Magnetic energy spectrum at different depth r

 $F_l(r)$: solid lines $R_l(r)$: circles

 r > 0.9r_J: slope of F_l(r) decreases rapidly with r r < 0.9r_J: F_l(r) maintains the same shape and slope ⇒ a shift in the dynamics of the system

●
$$r > 0.9r_{\rm J} : F_l(r) \approx R_l(r)$$

 $r < 0.9r_{\rm J} : F_l(r)$ deviates from $R_l(r)$
 \Rightarrow electric current becomes important below 0.9r

• suggests a dynamo radius $r_{\rm dyn} \approx 0.9 r_{\rm J}$

Spectral slope of $F_l(r)$ and $R_l(r)$

■ sharp transition in $\alpha(r)$ indicates $r_{\rm dyn} = 0.907 r_{\rm J}$

• $F_l(r)$ inside dynamo region is not exactly flat ($\alpha_{dyn} = 0.024$): white source assumption is only approximate

• r_{lowes} provides a lower bound to r_{dyn} : $\beta = 0$ at $r_{\text{lowes}} = 0.883$ General picture: $\alpha(r_{\text{out}})$ and α_{dyn} control r_{dyn} and r_{lowes}

Comparison with Juno data

- noise in Juno data \Rightarrow results depend on fitting range
- larger Pm gives smaller α_{dyn} , however $\alpha(r_{out})$ also becomes smaller $\Rightarrow r_{dyn}$ remains roughly the same

 \blacksquare $R_l(r_J)$ is shallower in the numerical model than from Juno observation

- the metallic hydrogen layer could be deeper than predicted by theoretical calculation
- **9** the existence of a stably stratified layer below the molecular layer
- our numerical model has more small-scale forcing than Jupiter does

Time variation of B_r at the surface

dipole is slowly varying compared to other modes

• secular variation: $\dot{B} = \frac{\partial B}{\partial t}$

• for j = 0, Lowes spectrum for secular variation:

$$R_{\dot{B}}(l,r) = \left(\frac{a}{r}\right)^{2l+4} (l+1) \sum_{m=0}^{l} \left(\dot{g}_{lm}^2 + \dot{h}_{lm}^2\right)$$

Secular variation spectrum $F_{\dot{B}}(l,r)$

 $\sum_{l=1}^{l} \mathbf{F}_{\dot{\mathbf{B}}}(l,r) = \frac{1}{4\pi} \oint |\dot{\mathbf{B}}(r,\theta,\phi)|^2 \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi$

A spectral correlation time τ_l

 \blacksquare a correlation time for different mode l:

$$\tau_l(r) = \left\langle \sqrt{\frac{F(l,r)}{F_{\dot{B}}(l,r)}} \right\rangle_t$$

• for j = 0, τ_l becomes independent of r:

$$\tau_{l} = \left\langle \sqrt{\frac{\sum_{m=0}^{l} \left(g_{lm}^{2} + h_{lm}^{2}\right)}{\sum_{m=0}^{l} \left(\dot{g}_{lm}^{2} + \dot{h}_{lm}^{2}\right)}} \right\rangle_{t}$$

two-parameter power law (e.g. Holme & Olsen 2006):

$$\tau_l = \tau_{\rm SV} \cdot l^{-\gamma}, \quad 1.32 < \gamma < 1.45$$

 $\tau_{\rm SV} \sim$ a secular variation time scale

• one-parameter power law (e.g. Christensen & Tilgner 2004):

$$\tau_l = \tau_{\rm SV} \cdot l^{-1}$$

Example of τ_l in geodynamo

 $\tau_l = \tau_{\rm SV} \cdot l^{-1}$

Spectral correlation time τ_l in Jupiter dynamo model

γ and $\tau_{\rm SV}$ in Jupiter dynamo model

