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Let’s start on Earth . . .
Structure of the Earth

CRUST
various types of rocks

MANTLE
magnesium-iron silicate

OUTER CORE
liquid iron + nickle

INNER CORE
solid iron + nickle

CMB

(not to scale)

core-mantle boundary (CMB): sharp boundary between the
non-conducting mantle and the conducting outer core
⇒ dynamo action entirely confined within the outer core

dynamo radius rdyn: top of the dynamo region ≈ rcmb

one way to deduce rcmb from observation at the surface:
magnetic energy spectrum



Gauss coefficients glm and hlm

Outside the dynamo region, r > rdyn:

j = 0

∇×B = µ0 j = 0 =⇒ B = −∇Ψ

∇ ·B = 0 =⇒ ∇2Ψ = 0

a = radius of Earth

Consider only internal sources,

Ψ(r, θ, φ) = a

∞∑
l=1

l∑
m=0

(a
r

)l+1
P̂lm(cos θ)(glm cosmφ+ hlm sinmφ)

P̂lm : Schmidt’s semi-normalised associated Legendre polynomials

glm and hlm can be determined from magnetic field measured at
the planetary surface (r ≈ a)

Earth interior

rdyn

a

j = 0

dynamo region



The Lowes spectrum

Average magnetic energy over a spherical surface of radius r

EB(r) =
1

2µ0

1

4π

∮
|B(r, θ, φ)|2 sin θ dθ dφ

Inside the source-free region rdyn < r < a,

2µ0EB(r) =

∞∑
l=1

[(a
r

)2l+4
(l + 1)

l∑
m=0

(
g2
lm + h2

lm

) ]

Lowes spectrum (magnetic energy as a function of l):

Rl(r) =
(a
r

)2l+4
(l + 1)

l∑
m=0

(
g2
lm + h2

lm

)
=
(a
r

)2l+4
Rl(a) (downward continuation)



Estimate location of CMB using the Lowes spectrum

Rl(a)

a=Earth’s radius

Rl(rcmb) =

(
a

rcmb

)2l+4

Rl(a)

(Robert Parker, UCSD)

downward continuation from a to rcmb through the mantle (j = 0):

lnRl(a) = 2 ln
(rcmb

a

)
l + 4 ln

(rcmb

a

)
+ lnRl(rcmb)

white source hypothesis: turbulence in the core leads to an even
distribution of magnetic energy across different scales l,

Rl(rcmb) is independent of l

rcmb ≈ 0.55a ≈ 3486 km agrees very well with results from seismic
waves observations



Interior structure of Jupiter

(NASA JPL) theoretical σ(r) (French et al. 2012)

low temperature and pressure near surface ⇒ gaseous molecular H/He

extremely high temperature and pressure inside ⇒ liquid metallic H

core?

transition from molecular to metallic hydrogen is continuous

conductivity σ(r) varies smoothly with radius r

At what depth does dynamo action start?



Lowes spectrum from the Juno mission

Figure 5 compares the Lowes’ spectrum (Lowes, 1974) computed from the JRM09model field with that of the
Earth (Langel & Estes, 1982). The Lowes spectrum offers a relative comparison of the mean square magnetic
field contributed bymodel spherical harmonic terms of degree n. A magnetic field with similar amplitudes on
a sphere at all spatial scales would result in a relatively flat spectrum at the corresponding radial distance, like
the Earth’s crustal field (r = 1 Re). The Earth’s dynamo, in contrast, fits a linear trend in degree n reflecting the

depth to the dynamo surface (at ~0.54 Re). Naively interpreted, the cur-
rent trend in Jupiter’s Lowes’ spectrum through degree 10 might imply
a dynamo core surface near 0.85 Rj, although the Jovian dynamo is
likely not characterized so simply as having a sharp transition between
electrically conducting fluid and (relatively) insulating mantle above
(like Earth’s).

5. Conclusions

We present a degree 10 spherical harmonic model of Jupiter’s plane-
tary magnetic field, offering the most detailed view of a planetary
dynamo (other than Earth) ever obtained. This is an interim model,
based on a subset of the orbital data to be acquired during Juno’s base-
line mission. This model will improve prediction of the field at close-in
radial distances, relative to prior models, and prove useful in planning
Juno’s remaining orbital operations. But as yet adjacent periapsis
passes are too widely spaced in longitude (~0.8 Rj at perijove) to con-
strain the field at the smallest spatial scales evident in observations
near closest approach. Therefore, one must anticipate significant
departures from the model during subsequent perijoves, as Juno
slowly accumulates longitudinal coverage of the field with perijove
separation (~0.2 Rj after 33 orbits) comparable to the depth to the
source region.

It is premature to discuss potential secular variation of the field,
although it is a topic of great interest and recent speculation
(Connerney & Acuña, 1982; Ridley & Holme, 2016; Russell & Dougherty,

Figure 4. Contours of the radial magnetic field (Gauss) on the dynamically flattened surface with equatorial radius
rc = 0.85 Rj in rectangular latitude-longitude projection. An orthographic projection of this figure is provided in the sup-
porting information, showing remarkable agreement with Moore et al.’s (2017) analysis (their Figure 2) of the perijove 1
observations.

Figure 5. A comparison of the Lowes’ spectrum for Earth and Jupiter using the
JRM09 model magnetic field through degree/order 10.

Geophysical Research Letters 10.1002/2018GL077312

CONNERNEY ET AL. 2595

(Connerney et al. 2018)

Juno’s spacecraft reached Jupiter
on 4th July, 2016

currently in a 53-day orbit,
measuring Jupiter’s magnetic field
(and other data)

Rl(rJ) up to l = 10 from latest
measurement (8 flybys)

Lowes’ radius: rlowes ≈ 0.85 rJ
(rJ = 6.9894×107m)

Questions: with the conductivity
profile σ(r) varying smoothly,

meaning of rlowes? rlowes = rdyn?

white source hypothesis valid?

concept of “dynamo radius” rdyn
well-defined?
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A numerical model of Jupiter

spherical shell of radius ratio rin/rout = 0.0963 (small core)

rotating fluid with electrical conductivity σ(r) driven by buoyancy

convection forced by secular cooling of the planet

anelastic: linearise about a hydrostatic adiabatic basic state (ρ̄, T̄ , p̄, . . . )

dimensionless numbers: Ra, Pm,Ek, Pr

∇ · (ρ̄u) = 0

Ek

Pm

[
∂u

∂t
+ (u · ∇)u

]
+ 2ẑ × u = −∇Π′ +

1

ρ̄
(∇×B)×B −

(
EkRaPm

Pr

)
S

dT̄

dr
r̂ + Ek

Fν

ρ̄

∂B

∂t
= ∇× (u×B)−∇× (η∇×B)

ρ̄T̄

(
∂S

∂t
+ u · ∇S

)
+
Pm

Pr
∇ ·FQ =

Pr

RaPm

(
Qν +

1

Ek
QJ

)
+
Pm

Pr
HS

Boundary conditions: no-slip at rin and stress-free at rout, S(rin) = 1 and S(rout) = 0,
electrically insulating outside rin < r < rout. (Jones 2014)



A numerical model of Jupiter

spherical shell of radius ratio rin/rout = 0.0963 (small core)

rotating fluid with electrical conductivity σ(r) driven by buoyancy

convection forced by secular cooling of the planet

anelastic: linearise about a hydrostatic adiabatic basic state (ρ̄, T̄ , p̄, . . . )

dimensionless numbers: Ra, Pm,Ek, Pr

a Jupiter basic state:

is Nphi/3-1 because of de-aliasing. The h and / resolutions shown
in Table 1 are defined as

hres ¼
1

Nm

Xl¼L

l¼L�4

Xminðl;MÞ

m¼0

Elm

Etot
; /res ¼

1
5ðL�MÞ þ 15

Xm¼M

m¼M�4

Xl¼L

l¼m

Elm

Etot
;

L ¼ 2Nth=3� 1; M ¼ Nphi=3� 1;

Nm ¼
5ðM þ 1Þ if M 6 L� 5
5
2 ðLþMÞ � 1

2 ðL�M � 2Þ2 � 3 if L� 4 6 M 6 L

(
ð4:1Þ

where Elm is the energy in the spherical harmonic of degree l and
order m and Etot is the energy summed over all harmonics. hres is
the energy in the last 5 spherical harmonics, i.e. those of degree
L� 4 6 l 6 L, divided by the product of the total energy and the
number of modes that contribute to the last 5 harmonics. The
/-resolution is defined similarly but using the order of the spherical
harmonics rather than the degree. Note that because m cannot
exceed l, a much larger number of harmonics can contribute to
the last five l harmonics than to the last five m harmonics. To com-
pensate for this, in (4.1) we divide by the number of modes contrib-
uting as well as the total energy. This gives a convenient measure of
how fast the higher harmonics are dropping off in the energy
spectrum. Table 1 shows the results using the kinetic energy spec-
trum. In this region of the parameter space, the convergence of the
magnetic energy spectrum and the entropy spectrum are similar in
magnitude. Run C had the lowest resolution, and was run for over 2
diffusion times. The behaviour is very similar to that of run A. Run D

has the highest resolution in h and was run for about 0.5 magnetic
diffusion times. Note that the extra harmonics introduced in runs D
and G by increasing Nth have dramatically improved the h-conver-
gence, as we would expect, but have not reduced the /-convergence
as much. The cumulative average of the dipole at t ¼ 1:2 was 0.40
for Run A and 0.41 for run D. This indicates satisfactory convergence
in the spherical harmonic expansions. The differences between the
Nr = 128 and Nr = 160 runs were minor. Checks were also made on
the timestep controller, to ensure the timestep was small enough to
make no major differences to long term averages. The timestep was
normally around 10�7 or slightly less in the presented runs.

4.2. Time-dependence of the solutions

Fig. 2 shows results for the case Pr ¼ 0:1; Pm ¼ 3;
E ¼ 2:5� 10�5; Ra ¼ 1:1� 107, details of the runs being given in
Table 1. The magnetic energy, kinetic energy, and dimensionless
heat flux, are defined as in Section 4 of Jones et al. (2011). To show
how key quantities are converging to a steady mean, cumulative
averages are shown starting at t ¼ 0:2 magnetic diffusion times,
to remove the effect of initial transients. It was noted in Jones
et al. (2011) that very long runs are needed to obtain very accurate
values of the average energies, and the high resolution require-
ment and short timestep makes this impractical, but the cumula-
tive average gives an idea of how the energies and dipole
moment are approaching statistically steady values. The cumula-
tive average over all available data for each run is given in Table 1,
with a brief comment on the nature of each dynamo. Starting with
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Fig. 1. (a) Density as a function of radius for the reference state. The smooth curve is the interpolation formula used in the model, crosses are data points from model J11-8a
(French et al., 2012). (b) Diffusivity as a function of radius. (c) Temperature as a function of radius.
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ρ̄(r) η(r) =
1

µ0σ(r)



Ra = 2× 107, Ek = 1.5× 10−5, Pm = 10, P r = 0.1

radial magnetic field, Br(r, θ, φ)

r = rout

dipolar

r = 0.75rout

small scales



Where does the current start flowing?

r=rJ

0.5 0.6 0.7 0.8 0.9

10!2

10!1

100

101

102

103

104

105

106

<(r)
jrms(r)

average current over a spherical surface of radius r

µ0j = ∇×B

j2
rms(r, t) ≡

1

4π

∫ 2π

0

∫ π

0
|j|2 sin θ dθ dφ

jrms drops quickly but smoothly in the transition region, not
clear how to define a characteristic “dynamo radius”



Magnetic energy spectrum, Fl(r)

average magnetic energy over a spherical surface:

EB(r) =
1

2µ0

1

4π

∮
|B(r, θ, φ)|2 sin θ dθ dφ

Lowes spectrum: recall that if j = 0, we solve ∇2Ψ = 0, then

2µ0EB(r) =

∞∑
l=1

[(a
r

)2l+4
(l + 1)

l∑
m=0

(
g2
lm + h2

lm

) ]
=

∞∑
l=1

Rl(r)

generally, for the numerical model, B ∼
∑

lm blm(r)Ylm(θ, φ),

2µ0EB(r) =
1

4π

∮
|B(r, θ, φ)|2 sin θ dθ dφ =

∞∑
l=1

Fl(r)

j(r, θ, φ) = 0 exactly =⇒ Rl(r) = Fl(r)



Magnetic energy spectrum at different depth r

Fl(r): solid lines

Rl(r): circles

r > 0.9rJ : slope of Fl(r) decreases rapidly with r
r < 0.9rJ : Fl(r) maintains the same shape and slope
⇒ a shift in the dynamics of the system

r > 0.9rJ : Fl(r) ≈ Rl(r)
r < 0.9rJ : Fl(r) deviates from Rl(r)
⇒ electric current becomes important below 0.9rJ

suggests a dynamo radius rdyn ≈ 0.9rJ



Spectral slope of Fl(r) and Rl(r)

log10 Fl(r) ∼ −α(r)l

log10Rl(r) ∼ −β(r)l

Rl(r) =
( rout

r

)2l+4
Rl(rout)

β(r) = β(rout)−2 log10
rout
r

sharp transition in α(r) indicates rdyn = 0.907rJ

Fl(r) inside dynamo region is not exactly flat (αdyn = 0.024):
white source assumption is only approximate

rlowes provides a lower bound to rdyn: β = 0 at rlowes = 0.883

General picture: α(rout) and αdyn control rdyn and rlowes



Comparison with Juno data

noise in Juno data ⇒ results depend on fitting range

larger Pm gives smaller αdyn, however α(rout) also becomes smaller
⇒ rdyn remains roughly the same

Rl(rJ) is shallower in the numerical model than from Juno observation

the metallic hydrogen layer could be deeper than predicted by theoretical
calculation
the existence of a stably stratified layer below the molecular layer
our numerical model has more small-scale forcing than Jupiter does



Time variation of Br at the surface

Pm=10

dipole is slowly varying compared to other modes

secular variation: Ḃ =
∂B

∂t

for j = 0, Lowes spectrum for secular variation:

RḂ(l, r) =
(a
r

)2l+4
(l + 1)

l∑
m=0

(
ġ2
lm + ḣ2

lm

)



Secular variation spectrum FḂ(l, r)
∞∑
l=1

FḂ(l, r) =
1

4π

∮
|Ḃ(r, θ, φ)|2 sin θ dθ dφ

geomagnetic SV
surface (Holme & Olsen 2006)

520 R. Holme and N. Olsen

We begin by examining the spectrum of the secular variation, a
methodology which has previously proved fruitful for studying the
geomagnetic field. Various authors (e.g. Mauersberger 1956; Lowes
1974) noticed independently that the mean-square value of the field,
integrated over a spherical surface, has a simple form

1
A

∮
B · Bd A =

∞∑

l=1

(l + 1)
(

a
r

)2l+4 l∑

m=0

((
gm

l

)2 +
(
h m

l

)2
)

, (8)

where A is the area of the sphere at radius r. It is then instructive for a
given radius r to plot the individual contributions to this integral from
components of different degree l (effectively wavenumber) against
that degree, giving a “power spectrum” of the field. This form of
the spectrum is most commonly referred to as the Lowes spectrum,
and it has been used, amongst other things, to justify a separation
between source contributions from the Earth’s core and lithosphere
(Langel & Estes 1982), to provide a geomagnetic estimate of the
depth to the CMB (Voorhies et al. 2002; Voorhies 2004), and as a
tool for examining errors in magnetic models (Cain et al. 1989b;
Holme & Jackson 1997). Here, we consider a similar spectrum for
the mean-square secular variation, plotting

(l + 1)
(

a
r

)2l+4 l∑

m=0

((
ġm

l

)2 +
(
ḣ m

l

)2
)

, (9)

against l. In Fig. 1 this spectrum is plotted for three different field
models, calculated at the Earth’s surface r = a. ufm (Bloxham &
Jackson 1992) is representative of the resolution of the SV prior to
Ørsted and CHAMP, constrained by data from the Magsat satellite
and magnetic observatories. Two models are presented from Holme
& Olsen (2005), the first obtained only by a least-squares fit to data,
and the second (the CO2003 model) with additional weak regulariza-
tion to minimize the SV power at the CMB. At low harmonic degree,
all spectra fit closely an exponential behaviour (a straight line on this
linear-logarithmic plot). The ufm model deviates from power law
behaviour above harmonic degree l ≈ 7. This is the point at which
model regularization (damping) becomes dominant in the model: in
other words, the data were insufficient to constrain secular variation
above this degree. CO2003 maintains exponential behaviour to de-
gree 12. The behaviour of the undamped model at higher degree is
symptomatic of the effects of random errors in the data; the weak
damping of the CO2003 model constrains the spectrum to fall off
at degree 13 and above.

Of physically more interest is the SV spectrum at the CMB (r =
c), where we believe the magnetic field to originate, plotted in Fig. 2.
Again ufm (1980) falls off above degree 7, while the spectrum of
the new undamped model rises rapidly above degree 12, again con-
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Figure 1. Spectra of SV models at Earth’s surface.
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Figure 2. Spectra of SV models at CMB, r = c.

sistent with sources of error dominating the spectrum at these wave-
lengths. Plotting at r = c emphasizes additional interesting details,
for example “steps” in the spectra: each spectrum shows a sharp
increase from l = odd to l = even, and is flat or decreases from l =
even to l = odd. Most obviously, however, the spectra are ‘blue’—
their power increases with degree. A simple interpretation based on
‘white noise’ sources would suggest a SV source depth above the
CMB—the prediction from the CO2003 model is a depth of 0.66a
(in middle of lower mantle). There is no known source for SV at this
depth.

The spectrum (eq. 9) we have considered is convenient, but many
other more physically motivated spectra are possible, with different
functions of l as prefactors; see Voorhies (2004) for detailed dis-
cussion plus extensive references. To avoid a somewhat arbitrary
choice of spectrum, following McLeod (1985, 1996), we consider
the degree by degree ratio of the power in the SV to that in the main
field, plotting

R(l) =

∑l
m=0

((
ġm

l

)2 +
(
ḣ m

l

)2
)

∑l
m=0

((
gm

l

)2 +
(
h m

l

)2
) , (10)

against l. This function is independent of both definition of spec-
trum (the dependence on l in the prefactor cancels in the ratio), and
of depth r. Degrees 1 and 2 are known to be anomalous in both the
main field power spectrum and the SV spectrum (Voorhies 2004),
while degree 13–14 are affected by errors in SV , and controlled
by regularization, and by lithospheric field contribution to the main
field. We fit the remaining degrees (l = 3–12) with two different
functions. First, we fit an exponential curve R = AeBl, which would
be consistent with fitting a different source depth for the main field
and SV ; the source depth ratio would be exp (B/2). Secondly, we fit
a power law R = AlB, which would be consistent with a different
spectral definition for the main field and SV . These fits are presented
in Fig. 3. The power law curve fits the model better than the expo-
nential curve, and the residuals show less of a trend with degree.
In addition, the dipole term (l = 1) is better predicted, and the fit
to degrees 13 and 14 is consistent with the applied regularization.
The exponent of this curve is B = 2.9. We conclude that there is no
reason to assume a different source depth for the SV and main field,
but instead their spectra take different forms.

Why should this be? A different spectral form for field and SV
has been proposed before: McLeod (1996) predicted a ratio ∼l4 (i.e.
B = 4) (see also Voorhies 2004). The ratio has also been discussed
in terms of the characteristic timescale of variation of the field at a
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is best achieved by eq. (10) at least up to degree 12 or 13, above
which observational uncertainties start to be influential; thus we
will assume that the SV spectrum obeys

W ′(l, c) = ql(l + 1). (11)

The consequence of this functional form is a relation for the
timescale from eq. (6) of

τl ∝ 1
√

l(l + 1)(2l + 1)
(12)

so approximately proportional to l−3/2. This relation is in close
agreement with the earlier estimate of l−1.45 for the CO2003 model
that Holme & Olsen (2006) obtained from a power-law fit, but
disagrees with the suggestion of Lhuillier et al. (2011) of l−1 mo-
tivated by results from dynamo theory (which would correspond to
the upper, blue, lines in Fig. 1).

To estimate q, and to put statistical bounds on the fit, we follow
Hulot & Le Mouël (1994), and assume that each SV Gauss coef-
ficient is normally distributed with zero mean and some standard
deviation σ (l) which is a function of the wavenumber. (Note that
the assumption of zero mean fails, at least for the axial dipole SV ġ0

1
for which the steady decay of the dipole over historical time gives a
mean of approximately 15 nT yr−1. However, the axial dipole SV is
substantially smaller than that of the equatorial dipole, as a result of
which this failure does not strongly influence the following results.)
From this it follows that the variable (ġm

l /σ (l))2 is χ 2-distributed
with one degree of freedom. Hence the power W ′(l, c) is also χ 2-
distributed; with appropriate choice of σ (l) we define the mean

µ = ql(l + 1), with corresponding standard deviation
√

2
2l+1 µ. The

best fit value of q, assuming that observational error on the Gauss
coefficients and so on their power is negligible, is obtained by the
weighted mean of W ′(l, c)/(l(l + 1)) (in effect giving equal weight
to every Gauss coefficient). A less rigorous, but perhaps more con-
servative and reasonable, estimate might also be to take a simple
mean of W ′(l, c)/(l(l + 1)), allowing for the fact that due to down-
ward continuation the uncertainties increase with degree. We obtain
estimates of q for l = 1 to 12, to avoid possible contamination from
noise. The thin horizontal lines plotted in Fig. 1 give the range of
values obtained for the three epochs using both methods; as can be
seen, there is little difference between them (the values of q vary
between 38 000 and 40 000). The low degree spectrum has often
previously been fit by a power law seeking amplitude and source
depth; we prefer the relation (11) because it is theoretically moti-
vated, and also requires a fit of only one free parameter rather than
two (with the source depth defined physically as the CMB).

Taking q = 38 000, Fig. 2 compares eq. (11) against the CHAOS-
4 SV spectra at the CMB at epochs 2002.0, 2005.0 and 2008.0,
along with 1σ error bounds given by W ′(l, c)(1 ±

√
2/(2l + 1)).

The curves for each of the three epochs fit appropriately closely
in relation to the error bounds, providing strong support for the
appropriateness of the fit and the underlying statistical assumptions.
A clear break in slope of the spectrum is seen at degree l ≈ 14. Above
this, the spectrum is dominated by the effects of measurement and
modelling uncertainty; this is well-characterized by an exponential
fit to degrees 16 and above (the red line). This simple model of
the combination of two sources (the dashed blue line) provides
an excellent fit to the CHAOS-4 model spectra, far better than
can be obtained for a model of the spectrum of the field itself.
This suggests an origin for the SV at small scales, as there is no
evidence in the spectrum for influence from different strength field
harmonics (e.g. strong dipole and weak quadrupole), which would

Figure 2. Spectra of the CHAOS-4 SV at the CMB, r = c. Green line gives
theoretical model, dashed lines approximate 1σ error bounds.

give rise to much larger deviations from the general relation for the
spectrum. If, for example, SV was generated primarily by diffusion,
we would expect the structure of the SV spectrum to match that
of the main field, and hence with a lower power at l = 2. More
detailed spectral structure can also be seen (which in itself calls
into question the model of the Gauss coefficients as statistically
independent random variables); powers at even degrees fall above
the trend line, while odd degrees fall below it (previously reported by
Holme & Olsen 2006). Simple interpretations, such as a difference
in power between either equatorially symmetric (l + m even) or
antisymmetric (l + m odd) terms, or of azimuthally symmetric (m
even) rather than antisymmetric (m odd) terms, are not borne out
by detailed examination. We return to this point later.

We further extend the use of spectra to define a SA spectrum,

W ′′(l, r ) = (l + 1)
(a

r

)2l+4 l∑

m=0

((
g̈m

l

)2 +
(
ḧm

l

)2
)

. (13)

In Fig. 3, we plot W ′ ′ (l, c), the SA spectrum at the CMB. Moti-
vated by the success of the fit to the SV spectrum, we again plot
a trend curve given by eq. (11), again with statistically derived 1σ

error bounds. There is some difference in level of the SA spectra

Figure 3. Spectra of the CHAOS-4 SA at the CMB, r = c. Green line gives
theoretical model, dashed lines approximate 1σ error bounds.
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A spectral correlation time τl

a correlation time for different mode l:

τl(r) =

〈√
F (l, r)

FḂ(l, r)

〉
t

for j = 0, τl becomes independent of r:

τl =

〈√√√√∑l
m=0

(
g2
lm + h2

lm

)∑l
m=0

(
ġ2
lm + ḣ2

lm

) 〉
t

two-parameter power law (e.g. Holme & Olsen 2006):

τl = τSV · l−γ , 1.32 < γ < 1.45

τSV ∼ a secular variation time scale

one-parameter power law (e.g. Christensen & Tilgner 2004):

τl = τSV · l−1



Example of τl in geodynamo

compliance of the inferred law !n = tSVmax/n with the tnobs,
Figure 1 also presents 90% statistical dispersion bars,
deduced from the F2n+1,2n+1‐pdf for (tn/!n)2, in agreement
with the SIS model. Note that for this a posteriori check, the
exact (and not the rescaled) F2n+1,2n+1 are used, as our goal

is no longer to search for an optimal tSV, but instead to
verify the compatibility of the observations with their ex-
pected statistics. Note also that in the case of gufm1, the
factor Nn introduced above is always equal to one, which led
us to resort to F2n+1,2n+1‐pdfs, even though we computed
“time‐averaged” values of tnobs using equation (4). We obtain
that the observations (black stars) are all located within the
90% statistical dispersion bars, confirming the compatibility
of the inverse linear law tSVmax/nwith the observed geomag-
netic field, within the statistical framework we used.
[12] Let us now consider the relevance of the more

general two‐parameter power law !n = d × n−g. In order to
assess which sets of values (d, g) can possibly provide a
better fit to the data, we rely on equation (7) to compute
f (d, g). Figures 1e and 1f show these pdfs (normalised
by their maximum, and hereinafter denoted by f ), obtained
for CHAOS‐3 and gufm1, respectively. Figures 1e and 1f
reveal crescent‐shaped f > 0.8 surfaces (in red) which inter-
sect the g = 1 axis. Therefore, even if particular values of
(d, g) can provide a better fit to the data than (d, g) = (tSV, 1),
this improvement is marginal, and not statistically significant.

Figure 1. Correlation times tnobs (black stars) and corresponding fits (in red) computed for: (a) the epoch 2005 of CHAOS‐3
(using equation (3)); (b) the period 1840–1990 of gufm1 (using equation (4)); (c) some arbitrary epoch in our dynamo run
(using equation (3)); (d) a period of 10 · tSV in our dynamo run (using equation (4)). The fits are presented here with a 90%
statistical dispersion bar deduced from the F(2n+1)Nn, (2n+1)Nn‐pdf for (tn/!n)2, where Nn = 1 for Figures 1a–1c. (e–h) The
probability density of the two parameters (d, g) (normalised by its maximum) for the four cases described in Figures 1a–1d.

Table 1. Values of tSVmax With Their 90% Confidence Interval for
Various Geomagnetic Field and DynamoModels When Computing
tnobs Either From Equation (3) or From Equation (4)a

Model Equation n tSVmax tSV

CHAOS‐3 2005 3 2–13 [378; 425; 483] 445
GRIMM‐2 2005 3 2–13 [361; 406; 461] 446
POMME‐6 2005 3 2–13 [368; 413; 470] 443
gufm1 1840–1990 4 2–10 [423; 489; 579] 388
dynamo model 3 2–13 [0.129; 0.146; 0.164] 0.136
dynamo model 4 2–13 [0.137; 0.140; 0.143] 0.140

aValues for the geomagnetic field models are expressed in years, whereas
those for the dynamo model are in units of the viscous diffusion time. The
last column indicates the values of tSV recovered from a standard least‐
squares algorithm. Values in bold are tSVmax, and values in brackets are
their 90% confidence interval.
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τl = τSV · l−1



Spectral correlation time τl in Jupiter dynamo model



γ and τSV in Jupiter dynamo model

τl = τSV · l−γ

Pm = 10

Pm = 3


