

European Research Council Established by the European Commission

Supporting top researchers from anywhere in the world

Convective overshooting in stars with MUSIC

CCC 2019

Dimitar G. Vlaykov University of Exeter

T. Guillet, I. Baraffe, T. Constantino (Exeter) T. Goffrey (Warwick) J. Pratt (Georgia State)

Convective overshooting

- Two layers of fluid: one is stably stratified, the other isn't
- Vigorous convection
- Inertia drags convection across the Schwarzschild boundary, $\nabla = \nabla_{ad}$
- Results:
 - Wave excitation
 - Enhanced mixing (of temperature, angular momentum, material)

Convective overshooting

in stars

- Blamed for long standing problems in stellar evolution
 - Chemical mixing (*Li* depletion in PMS) *Castro et al 2016*
 - Transport of angular momentum

Roxburgh 1965; Shaviv & Salpeter 1973; Schmitt et al 1984, etc...

 Interpretation of helioseismology data Christensen-Dalsgaard et al 2011

Convective overshooting

in stars

- Blamed for long standing problems in stellar evolution
 - Chemical mixing (*Li* depletion in PMS) *Castro et al 2016*
 - Transport of angular momentum

Roxburgh 1965; Shaviv & Salpeter 1973; Schmitt et al 1984, etc...

 Interpretation of helioseismology data Christensen-Dalsgaard et al 2011

MUltidimensional Stellar Implicit Code

• Compressible Euler equations

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{u})$$
$$\frac{\partial (\rho e)}{\partial t} = -\nabla \cdot (\rho e \mathbf{u}) - p\nabla \cdot \mathbf{u} + \nabla \cdot (\chi \nabla T)$$
$$\frac{\partial (\rho \mathbf{u})}{\partial t} = -\nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) - \nabla p + \rho \mathbf{g}$$
$$\chi = \frac{16\sigma T^3}{3\kappa\rho}$$

 Realistic EoS & opacity (Lyon code; MESA; OPAL)

> (Baraffe et al., Paxton et al., Opacity Project at Livermore)

Prescribed gravity

MUltidimensional Stellar Implicit Code

• Euler equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho \mathbf{u}) \\ \frac{\partial (\rho e)}{\partial t} &= -\nabla \cdot (\rho e \mathbf{u}) - p \nabla \cdot \mathbf{u} + \nabla \cdot (\chi \nabla T) \\ \frac{\partial (\rho \mathbf{u})}{\partial t} &= -\nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) - \nabla p + \rho \mathbf{g} \\ \chi &= \frac{16\sigma T^3}{3\kappa\rho} \end{aligned}$$

 Realistic EoS & opacity (Lyon code; MESA; OPAL)

> (Baraffe et al., Paxton et al., Opacity Project at Livermore)

Prescribed gravity

• Fully compressible: $M_s \in (10^{-6}, 10^{-1})$

MUltidimensional Stellar Implicit Code

• Euler equations

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{u})$$
$$\frac{\partial (\rho e)}{\partial t} = -\nabla \cdot (\rho e \mathbf{u}) - p\nabla \cdot \mathbf{u} + \nabla \cdot (\chi \nabla T)$$
$$\frac{\partial (\rho \mathbf{u})}{\partial t} = -\nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) - \nabla p + \rho \mathbf{g}$$
$$\chi = \frac{16\sigma T^3}{3\kappa\rho}$$

 Realistic EoS & opacity (Lyon code; MESA; OPAL)

> (Baraffe et al., Paxton et al., Opacity Project at Livermore)

Prescribed gravity

- Fully compressible: $M_s \in (10^{-6}, 10^{-1})$
- Time-implicit
- Solar time scales:
 - $\tau_{dyn} \sim (R^3/GM)^{1/2} \sim 30 \text{ min}$
 - $\tau_{\rm conv} \sim V_{\rm rms}/H_p \sim 6 \,\rm days$
 - $\tau_{\text{thermal}} \sim GM^2/(RL) \sim 2 \times 10^7 \text{ yr}$

MUltidimensional Stellar Implicit Code

• Euler equations

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{u})$$
$$\frac{\partial (\rho e)}{\partial t} = -\nabla \cdot (\rho e \mathbf{u}) - p\nabla \cdot \mathbf{u} + \nabla \cdot (\chi \nabla T)$$
$$\frac{\partial (\rho \mathbf{u})}{\partial t} = -\nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) - \nabla p + \rho \mathbf{g}$$
$$\chi = \frac{16\sigma T^3}{3\kappa\rho}$$

 Realistic EoS & opacity (Lyon code; MESA; OPAL)

> (Baraffe et al., Paxton et al., Opacity Project at Livermore)

Prescribed gravity

- Fully compressible: $M_s \in (10^{-6}, 10^{-1})$
- Time-implicit
- Finite-volume staggered-grid
- IC from 1D stellar evolution model
- Spherical and Cartesian geometry (2d & 3d)

Solar simulations

- Initial conditions (reference state)
 current Sun model
 - $L = L_{\odot}, Z = Z_{\odot}, M = M_{\odot}$
 - EoS from MESA
 - NO rotation
 - NO magnetic fields
- Evolve over 100s of τ_{conv}
- Effect of the domain

Solar simulations

- Initial conditions (reference state)
 current Sun model
 - $L = L_{\odot}, Z = Z_{\odot}, M = M_{\odot}$
 - EoS from MESA
 - NO rotation
 - NO magnetic fields
- Evolve over 100s of τ_{conv}
- Effect of the domain

- Overshooting depth is typically taken as a horizontal and time average over e.g. K.E. flux
- BUT data is highly non-Gaussian in space and in time

(Pratt et al., 2016, 2017)

P(r_o/R)

- Overshooting depth is typically taken as a horizontal and time average over e.g. K.E. flux
- BUT data is highly non-Gaussian in space and in time
- Good fit by a Gumbel distribution

$$F(r) = exp\left[-exp\left(-\frac{x-\mu}{\lambda}\right)\right]$$

(Pratt et al., 2016, 2017)

- Overshooting depth is typically taken as a horizontal and time average over e.g. K.E. flux
- BUT data is highly non-Gaussian in space and in time
- Good fit by a Gumbel distribution

$$F(r) = exp\left[-exp\left(-\frac{x-\mu}{\lambda}\right)\right]$$

• Applied to Li depletion in PMS

(Baraffe et al. 2017, Pratt et al., 2016, 2017)

Dependence on the domain

velocity magnitude

r/R_☉∈[0.6, 0.97]

r/R_☉∈[0.4, 0.97]

r/R⊙∈[0.6, 0.9]

Dependence on the domain

velocity magnitude

r/R_☉∈[0.6, 0.97]

r/R_☉∈[0.4, 0.97]

r/R⊙∈[0.6, 0.9]

Overshooting evolution

Radial K.E. flux = $\langle u_r(\rho \mathbf{u}^2/2) \rangle_{\theta}$

r_{min} = 0.4

r_{min} = 0.6

Overshooting evolution

Radial K.E. flux = $\langle u_r(\rho \mathbf{u}^2/2) \rangle_{\theta}$

r_{min} = 0.4

r_{min} = 0.6

Summary and outlook

- Convective overshooting in stellar interiors
- MUSIC fully compressible, time-implicit ILES, with realistic microphysics on a spherical grid
- Effects of convective overshooting depend on high-order statistics
- Convective penetration for a wide range of stellar masses with and without rotation (envelopes and cores)
- Under development:
 - Magnetic fields (with constraint transport)
 - Explicit viscosity/diffusivity
 - Online tracer particles