) RATP
INFRASTRUCTURES

HLL Tutorial by RATP

Benjamin Blanc & Julien Ordioni — 4th of June 2019

About this tutorial Agenda
» Duration: 1h50

» Short overview of what we’ll talk about

» Short presentation of each of us and your expectation about this
tutorial

» RATP context

» HLL presentation, example, discussion and debate

Ground rules
» Participation, ask questions!

» Respect others, let them talk

> Agree to disagree

RATP

RATP, a national public service company

1 @
T

EPIC RATP (Paris) RATP Group 16 million journeys 63.000 collaborators One of the
Historic state-owned part in 14 countries every day worldwide (RATP Group) 5 leading players

RATP Group

RATP \G,) GROUP

Paris Boulogne-sur-Mer

00006 0,
060006, .60 %"
v @ S

_500 w2
06 ... :
> ©® gm @
; %) wmn@
| “°"'" | ®0

Aix-les-Bains SaintJulien-en-Genevois Annemasse

3500

RATP in Paris

More than 3.3 billions journeys per year
» About 98 % of punctuality (metro)

3000

» Up to 01:25 interval (L14)

2500

S More than 1 000 trains
S 2000
g RER A: 40,000km per day
2
:%’ 1500 Stations / Trains /
g Lines km Stops buses
O
8 96 136 222

1000

2 115 67 357

500

338 3727 7302 4532

M) 16 206 203 6%

Data: 2014

Workforce distribution (%)

RATP and human
resources

Divided into 21 departments

3.700 new collaborators in 2017

About 25.000 conductors (buses,
tram, metro and RER)

About 2.500 collaborators working
on engineering
» Transportation systems

» Information systems

Operating
70,1

Maintenance & IT Support func.
19,6 4,6

» Civil engineering
» Architects

» Etc.

Data:2017

OUR MISSIONS

Who are we?

AQL | ING RATP
25p. 70 ¢ 5 100 p. 45 000 p.

Engineering Department
Dealing with transportation systems
Involving passenger safety

About control/command software

AQL, Safety critical assessment software lab,
since end of 80s (SACEM, RER A)

AQL Assess that the running embedded software, including data, has a
safe behavior regarding the traveler safety

+@ +

» Train control/command systems(CBTC)

Safety critical software
assessment lab

Vital
generic
software

Embedded

Runtime

software

platform

For:

» Computerized-based or hybrid interlocking systems(PMI, PHPI)
» Other safety critical software(PSD, DIL, DOF)

With:
» State of the art tools and methods

» Dedicated tools: HIL testing environment , proof servers (1 T5 RAM)

10

Internal

assessment
When?

11

Workload

» Work until the commissioning
» Work late (after supplier validation)
» Quick update assessments thanks to our automatic methods

» Maximum use of certificates

/ = Workload for the 1st
commissioning

Workload for the 1st

J | update
/ Workload for the 1st
A A - update
/ k / \ — Commissioning

! & \ it 1
T Q Vo : T N "'_'|
; 4 \

Internal

assessment
Why?

12

» RATP safety policy
Provide an internal and independent assessment of safety critical
systems before commissioning

Legal duty

Supplier

Conception & Installation &

OQA

State authomfy

Internal and independent
assessment

IN FORMAL METHODS WE TRUST

To share basics...

“Program testing can be a very
effective way to show the presence
of bugs, but it is hopelessly
inadequate for showing their

absence.”

Edsger W. Dijkstra

The Humble Programmer, 1972

14

Typical assessment » Validation of each steps of the refinements
aCtiVities » System = software specification

» Software specification = source code

» Code source = executable

» Manual code review

» Tests validation and test coverage validation

System specification

\ Soft. Req. specification Validation tests
\ Soft. Arch. & design Integration tests
\ Soft. Component design Unit tests

\ Source code
-

Executable
15

Our assessment
activities

16

» Classical method

Validation of each V-cycle step
» A lot of manual activities

» Relative efficiency

» ... but available in all cases

» With formal methods
Exhaustive, accurate and non-ambiguous
» 100 % sure to discover problems with formal methods (feedback)

» Requires specific tools

» May be long, complex, indeterminate...
» Requires sharp proof engineering skills

» Efficient system update management

Retro-modelling?

1989, SACEM, the first
computerized ATP system

17

ZOMNE SNcF (KCVB)

‘ﬂ

V"‘@/)

R
G‘e““'.‘ 3 P \‘s 5‘3

e W g P o S
] ! % o I L A g P
o S P i Mg-wm__‘-nm a3
PO ¥ &t‘ (.i‘ a""ﬂ 49 5 E
W ST T T et W “‘ﬂ‘ﬁ'y E #5.80 \‘59‘-"
S S O e PO e
T , 4 St Mﬁ
1

1 ﬁu
i
A+

i.'|g\
I

Ed

e l&“
%"k oﬂpﬂlﬁﬂwﬂfﬂﬁvﬁp‘;t@‘ o 3-"":
Mim-l-- D AZJ]

KCVE

» Started in 1977, the development experienced new methods for
safety related to computer-based application using:

» Rigorous development model, coded mono-processor, application
software written in MODULA-2 (about 60 000 lines of code)

» Concern for safety of the ATP software

» Decision taken for “retro-modelling” the application code using
the “Z notation” (Hoare logic)
with Jean-Raymond Abrial and Stéphane Natkin
More than 10 unsafe scenarios discovered and corrected before
revenue service in 1989

C0n5eq uences » B-Book by Jean-Raymond Abrial

» Industrialization of the Atelier B
together with INRETS, SNCF,
GEC-Alsthom & Steria (now

Clearsy)
AT£|ER‘

1998 introducing the first
computerized ATP/ATO

» 100% vital software build using B

e e AN

0]
3
=
9]
=
50
3
©
=

© RATP/Bruno

» Paving the way for modern CBTC
systems

18

From B to retro-
modelling

19

After METEOR L14
» Only 2 suppliers were using B method

» European regulation required competition balance for public
procurement

> This clause used in tender documents had to be removed:
(9 “... the proof for obtention of the adequate safety level shall be
A brought either using B method, either another method should it present
an equivalent proving capacity (to be demonstrated by the tenderer)...”

RATP still convinced in using formal methods

» We specified a formal proof tool-chain called "Prover Certifier” to
perform formal proof over a software developed with a semi-
formal approach and without supplier software modification

PREVER'

» Provided to Ansaldo (CBTC) & Thales (CBI)
» 2010, (re)birth of the retro-modelling approach with PERF method

Languages Tools

Standards

Projects

RATP & formal methods

LUSTRE
‘Z‘ ADA

20

SACEM
RER A

ESTEREL

SCADE

ATELIER B

PROVER
CERTIFIER

2000

\ EN 50128
2001

METEOR
L14

\ EN 50128
2011

OCTYS
L3

b

T

:|| n
LT

n
PN sy l‘l:"‘ 7
Yo I L e Y

‘ HLL 2.7|published

‘ PHPI

OURAGAN
L13

OCTYS
LS & L9

SAET
L4

In formal methods 2008-2013: First formal verification on CBI (Petri nets + SAT solver)
we trust » Birth of the Proof toolkit (Prover Certifier)

» Birth of HLL

Also for our usage . .
» Simple structure & boolean equations

Since 2010, application to CBTC safety properties
» Birth of PERF Method and PERF formal toolkit

» Based on HLL & SAT solver

» Different translators

=2 s

v

=Y
l B

e X }
S

B r—
;. "L -
Sl
W &

o

oot

21

Retro-modelling

Because it’s efficient

22

PERF Method REKF
€tno

» Proof Executed over a Retro-engineered Formal model

» A RATP PERF formal tookit combined with third-party SAT proof engine
» Suitable for different projects and suppliers

» Independent of the software development cycle

» HLL Property level (component, soft. or system level) depends on the needs

System specification

Source code

-

Performed on projectss @ © O O OO O O ® ®

Executable

PERF

PERF formal
tookit overview

24

BuildEquiv

Input
(properties, source code)

Expanders

e
—_ d /
EX analysis tools B /
/
/
/
Ve
-
roofLog Checker plus
Doc. I
OC
RATP property
Output

(OK/ KO)

ERF
o

EN 50128:2011 compliant

PERF main results in the RATP context

y

« RBS2HLL: safety-

2018 based HLL model

« PHPI first revenue
in service
(Functionnal HLL
o B2HLL: first model)

2016 theoretical results

« CBTC proof replays

4

« System-Level safety

properties
« Tracking CBTC
« PERF on Manual function
ADA (Main Line) « Beginning of CIFRE
it fi PhD: from B Model
. II::EEII:STOOIkIt first o HLL (and PERF
.. toolkit)
« Application to
CBTC

25

Facts and figures about PERF

Manual C (k sloc) Manual ADA (k loc) SCADE (*.scade)

RATP Safety assessment using |4 IS4G vs “classic” and manual analysis

B Manual C Manual ADA SCADE

i B | 2

26 0% 100 % 0% 100 % 0% 100 % 0% 100 %

HLL translators

27

METHODE

B2HLL

» CIFRE PhD still in
progress

» Soon:
industrialization

» Details on TASE 2019,
Guilin China

Cifre

AN

—

SCADE5 &6

» SCADE 5 translator » Customized for
used for OCTYS generated code

» SCADE 6 translator » C or ADA subset
used for OURAGAN > Not easy to use on

» ANSYS is now manual C & ADA
included in the HLL code

brainstorming

The prOO'F Modelling...
engineering » Software

» Automatic translators but a minimal understanding of the generated
HLL is needed for CEX analysis or grey box modelling

» Ensure that translator application conditions are granted
» Properties

» Be careful of implicit hypothesis

» Define the appropriate level of property modelling

» And contain consequences on other activities

» Not too fast (else true issue)!

Application to projects
» Scalability of methods and tools

» Team training and globalization

. » Balance between costs, confidence and efficiency

To be continued...

29

Proof engines
» SMT or symbolic solvers to complete SAT solvers weaknesses

» MooN certified proof

Translators

» Develop new translators through the community

» Industrialize PhD work with B2HLL translator B2HLL
» Improve the RATP RBS2HLL translator RBS2HLL
HLL Community o¢ NTERESTED?

» Build a (legal & technic) frame around HLL with interested
designers, users, academics

» Publish sHLL specification?

HLL, THE CORE OF PERF

HLL, (not) a
modelling
language

31

HLL is the pivotal language of the PERF methodology

Programs under proof are not directly developped in HLL:
Translators allow to import Scade, C, Ada designs

HLL is a target language for these designs and a high level input
language of model-checking tools

These tools are intended to satisfy safety properties on the designs,
according to possible environment constraints

These tools rely on the synchronous observer approach

SAT/SMT Based
Model-Checking

32

Given a symbolic representation of a system: (In, S, Init, X)

A property P:
Safety: something bad never happens

Liveness: something good eventually happens

Does the property hold for all computations of the system?

Induction scheme is correct for safety properties:

1. Initiation: All initial states satisfy P
Init(S) = P(S)

2. Consecution: All successors of valid P-states are valid P-states
P(S) A X(In,S,S’) = P(S’)

A saturated
counter

33

Constants:

int N := 10;

Declarations:

int unsigned 4 cpt;

Definitions:
I(cpt) := O; // 1nit
X(cpt) = 1f cpt = N then 0 else cpt + 1; // transition

Proof Obligations:
(0 <= cpt) & (cpt <= N); // saturation
(cpt + 2) % (N+1) = X(X(cpt)); // circular behaviour

A saturated The property evolves synchronously with the design it observes, it
must be true for all cycle
counter

The proof scheme will then follow the two steps:
1. (0= cpt) ? Yes because I(cpt) =0
2. O0=cpt A X(cpt) => X(0 <cpt) ?

O=<cptAif cpt=NthenOelse cpt+1=>0=<if cpt=N then 0 else
cpt + 1

1. (0sN)=>0<0
2. (O=scpt)=>0=cpt+1

34

In a nutshell Data flow: a variable represents an infinite stream of data

Synchronous: all flows have the same length

Cyclic: time is abstracted as a unique discrete global clock
(unmentioned)

Declarative: The focus is on the input/output relationship rather than
on control structure

This is the language familly of Scade, Simulink, LabView, etc.

35

Datatypes

36

Atomic: boolean and integer (potentially bounded and signed)

int[0,15] vy;

Int unsigned 4 z;
Enumerated set of identifiers

enum {red, green, blue} color;
Hierarchy of finite sets

sort monostable, bistable < relays;

sort NS1-4.0.4, NS1-12.0.8 < monostable;
Structures and tuples:

struct {abs: iInt, ord:int} point;
Arrays with a statically defined set of sizes

Combinatorial functions

Dataflow
Equations

37

Two possible formulations:

vi=e, f e e, e, e, e, e,
(V) = e; £ T e
X(v) = F; € £o £ £, f;
Cyclic references must be broken by a latch:
X(e) o e e, e, e, e,
Pre(e) X(e) e, e, e, e, e
Pre(e, i) Pre (e) nil e, e, e, e,
i i, i, i, i, i,
Pre(e, 1)| 1, e e, e, €5

Equivalent formulation:
v = pre(f,e);

Data flow
operators

38

Pointwise application of usual operators:

o
T
e+f

So € . €3 €4
Lo £, £, £3 £,
e,+f, e, +f; e,+f, es;+f; e,+f,

Logical operators are lazy

Arithmetics is bounded and exact: memories and inputs must be
statically bounded

Unintialized flows produce a nil value that must not appear in
observable flows (proofs, outputs, constraints)

Those checks are performed by model-checking tools (sanity checks)

Arrays Arrays of static size:

odd[i] = if 1 = O then FALSE elif 1 = 1 then TRUE else odd[i-2]

Arrays can have a memory definition:

SW[i] := false, 1T 1 = 0 then a else SW[i1-1];

Arrays are accessed lazily on their definitions

Out of bounds access is considered an error

39

Functions

40

Functions are combinatory combinations of its potentially infinite
Inputs
int Fibonacci(int);

Fibonacci(1):= 1T 1 <= 2 then 1 else Fibonacci(i-1) else
Fibonacci(1-2);

But functions can not refer to memories values of its inputs:
bool bad_rising_edge(bool);
bad rising edge(x) := false, X & ~X(X);
bad rising edge 2(x) := x & ~x; // equivalent

Functions are limited to a single output value

Input types must be scalar

Quantifiers

41

Quantification over finite sets allows compact definitions:
// Does array A of 10 integers contains an even value

SOME 1:[0,9] (AL1] % 2 = 0);

// Does all even iIndices of A contains even values

ALL i :[0,91 (i %2 + 0 -> A[i] % 2 = 0);

Also has some numerical extensions:

e SUM
« PROD
e $max

e $min

HLL in practice The purpose of an HLL file may be twofold:

1. Formalizing knowledge

2. Solving requests using a SAT based tool (as of today)

The process is as follows :

1. Translation to a lower level language (LLL) where everything is bit
blasted

2. Solving sanity checks (partial definitions, array indices,
arithmetics overflow)

3. Launching tool:
1. properties are proved
2. properties are falsifiable: analyzing counter-example

3. properties are indeterminate: analyzing step counter-example
and adding lemmas

42

HLL CASE STUDY

Train Mapping:
Overview

44

Can we (RATP) manage to prove high level safety properties on a
critical CBTC component?

Train mapping allows to locate the rear side of communicating trains,
and the track elements occupied by non-communicating trains
otherwise.

A preliminary study at system level (Octys) lead to the definition of
three properties required by other components

Internal research project, based on a B based specification, joint work
with ClearSy

Helps to specify the forthcoming B2HLL Translator

Train Mapping:
Specification

45

Low level software specification in pseudo-B:

Static constants : nb of trains, tracks, switchs, time thresholds,
length

Range of integer to characterize each element (switchs, trains,
track elements)

Some enums : switch positions (left/right/none), status of track
section (free/unknown/occupied/...)

Static description of the current line (which switch is on which
track section, arrangement of track sections, etc)

Sets of inputs (messages from the track, switchs; time stamps;
messages from the trains)

Sets of outputs (status of trains; locations of trains)

Operations as modification of sets of internal definitions and
outpts, specified as loops over system elements

Trai n Mappi ng: Translation into sHLL (HLL + while loops):
H LL A]‘Ch itecture « Basic types as range of integers:

int [c_indet, c_nb XX] t XX;
* Global data structures by family:

struct {status: t_status,
occupying: t_train,

iIs_free: bool} t _state track;
t_state_ track”™(c_nb_track) t_tab _state track;
 Set of free input vars for messages:
Input_track_status t_status;
Input_train_position t _train_pos;
 Two tabs for each family:
tab _faml in t _tab faml;
tab fam2 out t _tab fam2;

Each function takes input tabs and produce output tabs

Global cyclic loop:
I(tab_faml in) = .;

X(tab_faml out) := (tab_faml in with status :=
input track status);

46

Train Mapping:
Topology

47

Line topology:

Several line descriptions at different level

Each is defined as an HLL function:
t switch switch _on_track(t_track, t direction);
switch_on_track(t,d):=
if t =2 // Track 1d
then 1f d = 1 // Direction i1s Up
then 2 // Switch Id
else c_indet // No more switch
else..;

huge amount of data, especially since all possible itineraries are
statically computed

150000 lines of HLL for a ZC in Line 5 (1 out of 5)

Train Mappi ng: * In the pseudo-B specification, 5 coherence properties has been
° : stated as proved in the B model:
Validation

// 1T occupying is not indet, then status of a track
section cannot be free or unknown

ALL ts : t_track(
tab_track out[ts].occupying != c_indet

<->
(tab_track out[ts].status = c_occl
#
tab_track out[ts].status = c_occ2)
);

 Trying to prove these properties in HLL helped find some
mistranslations of pseudo-B and typos, thanks to debugger

* Some coherence constraints on inputs have been added

* Performances may stall on complex functions, hard to debug

48

Train Mapping: Abstract topology:
Abstract Topology * Functions are declared but not defined

A set of constraints describes authorized configuration:

// A switch 1Is on a unique track section

ALL tsl :t track, ts2:t track, sw: t switch
(SOME d: t dir (switch on_track(tsl,d) = sw)
&

(SOME d: t dir (switch on_track(ts2,d) = sw)
->

tsl = ts2);

* This set has been validated through actual Line 5 and 1 data
configuration

* Some constraints may be proved against other constraints =
lemmas

49

Train Mappi ng: Recursive definitions helps to simplify the constraints:
AbStraCt TOpO'.ogy exists_path(tsl,ts2) :=

IT exists path _dir(tsl,ts2,up,c_nb_track) then up
elif exists path dir(tsl,ts2,down,c _nb track) then down
else c_indet;

exists path dir(tsl,ts2,dir,nb) :=
(nb '= 0 & tsl = c cv_indet & ts2 = c cv_indet & tsl 1= ts2)
&
(1s_neighbor_dir(tsl,ts2,dir)
#
SOME tsi : t_track (
i1s_neighbor_dir(tsl,tsi,dir)
&
exists _path_dir(tsi,ts2,dir,nb-1)

50

Train Mapping:
Validation

51

Refinement properties have been proved according to a higher level
system description:

What should happen when the software does not receive a
message from a train for a long time?

What should happen when the software receives a message from a
train not already mapped?

What should happen when the software receives a message from a
train already mapped?

How the software can merge several track sensors to improve
mapping accuracy?

How the software should follow lost equipment from ground
sensors?

How the system should sweep over the topology in order to clean
mapping operations?

Train Mapping:
Validation

52

What should happen when the software receives a message from a
train already mapped?

« Condition:
 no other train between last position and current
« current position is inside ZC
- Train structure has been maintained
* Then:
- current track section is tagged with train

- range of track section between last and current is cleaned,
according to train status (exact -> free or approximate ->
unknown)

- approximation status of train is propagated

This property can be proved on abstract topology

Train Mapping:
Safety Properties

53

However these properties cannot ensure alone general safety
properties of the software

From global Octys safety analysis:
 All trains present in the ZC are represented in the global structures

» Their position is upstream their real position, up to the worst
pullback

* Order in the line is equal to order in the representation

These safety properties need to refer to actual trains: a specific model
of trains have been developed

Train Mappi n g: Hypotheses:
Trai n Model * No train smaller than shunt holes

* Trains don’t go back

Real trains:
« Superset of communicating trains

 Are identified by their real position and direction onto track
sections

 Are partially ordered

Constraints:

// Trains are entering on a edge of the ZC

ALL tp - t_tp_reel (

~inside ZC(tp) & X(inside ZC(tp))

->

SOME ts :© t_track (
exists_real path(ts,X(tp_real_arr(tp)),tp _real _dir(tp))
&

. nb_neigbors(ts) = 1));

Train Mapping: Constraints:
. // Trains move along feasible paths
Train MOdEl ALL tp : t _tp reel % "

inside ZC(tp) & X(inside_ ZC(tp))

->

exists _real path(tp_real _arr(tp),X(tp_real _arr(tp)).,tp real dir(tp))
&

exists _real path(tp_real avt(tp),X(tp_real _avt(tp)).,tp real dir(tp))

)

// Switches don’t move under a train
ALL sw: t _switch, tp : t tp_reel, ts : t _track, dir : t dir (
inv_track dir_switch _div(ts,dir) = sw
&
I1s_under_train(tp,ts)
->
X(position_switch(sw)) = position_switch(sw)

55

Train Mappi ng Metrics:

Results * Functional model: 2805 lines of code
 Abstract Topology: 945 lines

* Train Model: 1640 lines

Still under investigation!

Different level of properties: coherence, refinement,safety
Limited topology and trains evolution

Counter-examples under analysis for some sub-functions

Huge potential: all possible implementations are taken into account

56

Available Tools Prover Technology: PSL

Systerel: S3

SafeRiver: SafeProver

57

HLL COMMUNITY

HLL
community

59

0

A community for HLL
designers, users, editors and
academics to:

» Share materials, knowledge,
common basis

December 4th at NOVOTEL Les Halles, Paris

Join the HLL community

» Build together the evolution

of HLL

» Guarantee sustainability

» Make HLL a state of the art
of software validation

PREVER' '\7 psysterel sorgglyer PALLINDE

Ansaldo SIS ALSTOM fkOos THALES

A Hitachi Group Company

e ke

13th February 2018: HLL meeting with academics

ENS/UPMC/IRIF INRIA, INP-ENSEEIHT/IRIT, LRI, LIP6, LORIA, CEA, ONERA

N
A

o—
= S 1\. ; ~. ‘ ",
;.. _ .'" e disly
l'éva f w v

% >

RATP position

61

Home Submit Browse v Search Documentation

hal-01799749, version 1

HLL v.2.7 Modelling Language Specification

Julien Ordioni '- 2, Nicolas Breton , Jean-Louis Colago ®®WM

n RATP - Département ING/STF/QS [Fontenay-sous-Bois] (RATP)
E RATP - Régie Autonome des Transports Parisiens

Abstract : This RATP document, based on an original document from Prover Technology, details the synt:
formal modelling language " High Level Language " (HLL). HLL is used for several years by RATP and som{aaaaass
SYSTEREL, Prover Technology) to perform formal verification on CBTC and interlocking safety critical software

Keywords : SYSTEREL RATP | Prover technology = Modelling language ' Formal language = HLL = Specification

» We are historical co-founder of HLL
» We are a (power) user of HLL
» We want to share HLL

RATP-STF-16-01805_Publication_...
Publication funded by an institution

IDENTIFIERS

« HAL Id : hal-01799749, version 1

» We want to show its efficiency, scalability and accuracy

» We need stability, sustainability and backward compatibility

» We have technical needs for our projects

Interested?

62

Join us!
» julien.ordioni@ratp.fr

» benjamin.blanc@ratp.fr

THANK YOU

't7 RATP
INFRASTRUCTURES

