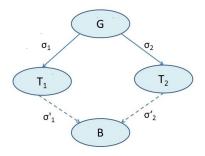
Merging and Repairing Ontologies

Alan Bundy Ewen Maclean

School of Informatics, University of Edinburgh

UK Ontology Network 2016


Outline

2 Repairing Faulty Ontologies using Reformation

Analogical Blends

- T_1 and T_2 are the parent theories, and B is the blend constructed from them.
- Alignments between concepts in each of the two parents are given by the morphisms σ_1 and σ_2 between the general theory, *G*, and the two parent theories, T_1 and T_2 .
- The colimit algorithm then constructs the morphisms σ'_1 and σ'_2 , which together define *B*.

э

(日)、

Merging Two Ontologies

T_1

Own(Cust _a , Prod _a),	$Part_Num(Prod_a) = 123$
$Own(Cust_b, Prod_b),$	$Part_Num(Prod_b) = 123$
$Prod_{a} eq Prod_{b}$	

T_2

Sold_To(Cust_c, Prod_c), Ser_Num(Prod_c) = 234
Ser_Num(x) = Ser_Num(y)
$$\implies$$
 x = y

Morphisms

$$\sigma_1 = \{ p \mapsto Own, f \mapsto Part_Num \}$$

$$\sigma_2 = \{ p \mapsto Sold_To, f \mapsto Ser_Num \}$$

where G consists of just binary predicate p and unary function f.

The Merged Ontology as a Blend

В

 $\begin{array}{lll} Sold_To(Cust_a, Prod_a), & Ser_Num(Prod_a) = 123\\ Sold_To(Cust_b, Prod_b), & Ser_Num(Prod_b) = 123\\ Sold_To(Cust_c, Prod_c), & Ser_Num(Prod_c) = 234\\ Ser_Num(x) = Ser_Num(y) \implies x = y\\ Prod_a \neq Prod_b \end{array}$

- Unfortunately, *B* is inconsistent.
- The error was to align $Part_Num$ from T_1 with Ser_Num from T_2 .

Proof of Inconsistency

Proof of \perp (= false)

 $\frac{Ser_Num(x) = Ser_Num(y) \implies x = y}{Ser_Num(Prod_a) \neq Ser_Num(Prod_b)} Prod_a \neq Prod_b}$ $\frac{Ser_Num(Prod_a) \neq 123}{\frac{123 \neq 123}{\perp} z = z}$ $Ser_Num(Prod_a) = 123$

- Matching colours show formulae that are unified.
- Apply reformation to block the red unification.
- Suggested repair: rename apart the two occurrences of Ser_Num.
- Implemented by dropping f from G and, hence, from morphisms $\sigma_1 \& \sigma_2$.

Repaired Merged Ontology

$\nu(B)$

 $\begin{array}{ll} Sold_To(Cust_a, Prod_a), & Part_Num(Prod_a) = 123\\ Sold_To(Cust_b, Prod_b), & Part_Num(Prod_b) = 123\\ Sold_To(Cust_c, Prod_c), & Ser_Num(Prod_c) = 234\\ Ser_Num(x) = Ser_Num(y) \implies x = y\\ Prod_a \neq Prod_b \end{array}$

where the green formulae are the repaired ones.

Conclusion

- Ontologies can be merged by analogical blending.
- But some blends may be faulty.
- Faults can be revealed by reasoning failures.
- Reformation uses such failures to diagnose and repair faulty ontologies.

