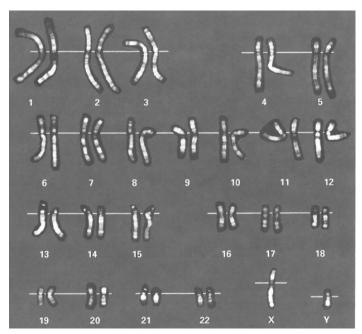


Exploring modelling choices: using non-functional characteristics to test an ontology add-on


UKON 2016

Jennifer D. Warrender Phillip Lord

April 2016

Modelling karyotypes

- What is a karyotype?
- Problem representing karyotypes
 - o Can be complicated
 - o Not computationally amenable
 - o A lot of them
- The Karyotype Ontology (Warrender and Lord, 2013)

Tawny-OWL

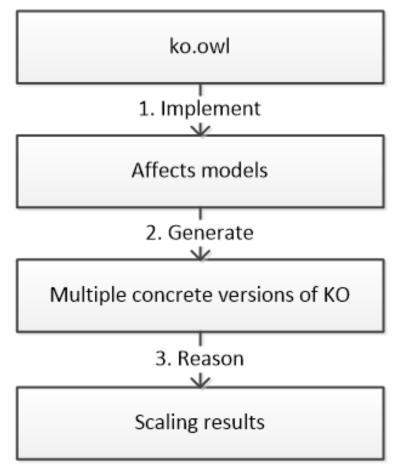
- Novel tool Tawny-OWL (Lord, 2013)
 - o Motivated by karyotype work
 - o "Textual user interface"
 - o Fully programmatic
 - o github.com/phillord/tawny-owl
- The Karyotype Ontology
 - o Pattern-driven approach
 - o Rapidly change and refine ontology
 - Investigate the effect an extension on the reasoning performance

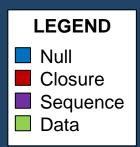
The affects relation

- A deletion event affects a sequence of bands between two breakpoints

 o 46,XX,del(1)(q42) → { 1q42, 1q43, 1qTer }
- "How do we model the affects restriction?"
- A priori, it is difficult to determine which representation will work best

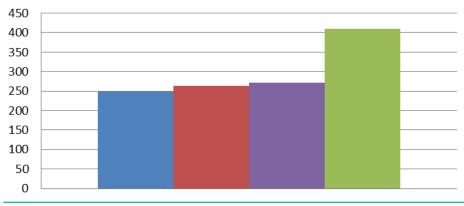
o non-functional characteristics such as reasoning time

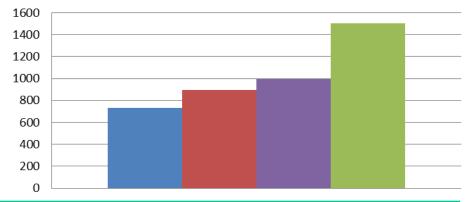

• Investigate three different "affects" models


Approach

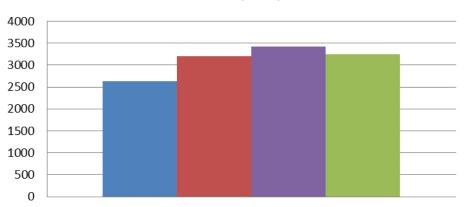
Three step process:

- 1. Implement
 - Closure, Sequence, Data
- 2. Generate
 - 1600 ontologies
 - Vary in size
- 3. Reason





Results


10 karyotypes

100 karyotypes

1,000 karyotypes

Summary

- Test performance, scalability and extensibility
- Pattern-driven and programmatic approach
 - Automatically and consistently regenerate ontologies easily and quickly
- Investigation of three distinct representations of the affects relation
 - Number if karyotypes
 - Number of abnormalities
- Use real world data
 - K-parser <u>github.com/fujimuramasa/k-parser/</u>

Contacts and links

- Contacts:
 - o Jennifer D. Warrender jennifer.warrender@newcastle.ac.uk
 - o Phillip Lord phillip.lord@newcastle.ac.uk
- Thanks:
 - o Anthony Moorman
- Links:
 - o Tawny-OWL <u>github.com/phillord/tawny-owl</u>
 - o tawny-tutorial github.com/phillord/tawny-tutorial
 - o tawny-karyotype github.com/jaydchan/tawny-karyotype
 - o tawny-karyotype-scaling <u>github.com/jaydchan/tawny-karyotype-</u> scaling

Lord, P. (2013). The Semantic Web takes Wing: Programming Ontologies with Tawny-OWL. OWLED 2013. Available: <u>arxiv.org/abs/1303.0213</u>

Warrender, J. D. and Lord, P. (2013a). The karyotype ontology: a computational representation for human cytogenetic patterns. Bio-Ontologies 2013. Available: <u>arxiv.org/abs/1305.3758</u>

Jennifer D. Warrender jennifer.warrender@newcastle.ac.uk

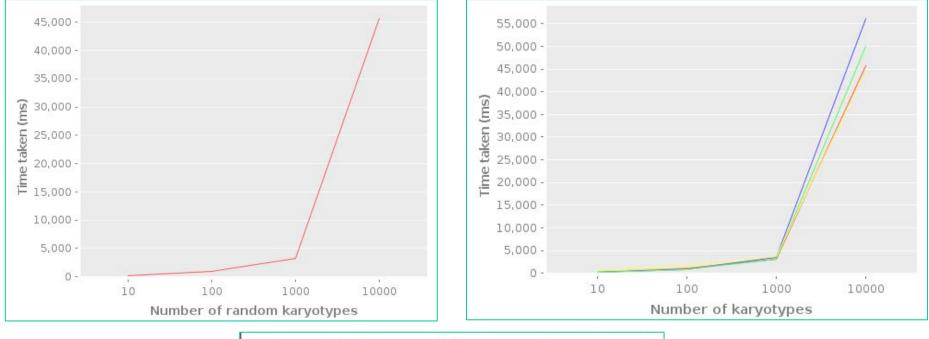
QUESTIONS?

April 2016

"Affects" models

<u>Original</u> No affects relation	(defclass 46,XX,del(1)(q42) :super (exactly 1 hasEvent (and Deletion (some hasBreakPoint 1q42 1qTer)))
Affects 1 ObjectProperty – includes the use of the closure axiom	(defclass 46,XX,del(1)(q42) :super (exactly 1 hasEvent (and Deletion (some hasBreakPoint 1q42 1qTer))) (some affects 1q42) (some affects 1q43) (some affects 1q44) (only affects (or 1q42 1q43 1q44))

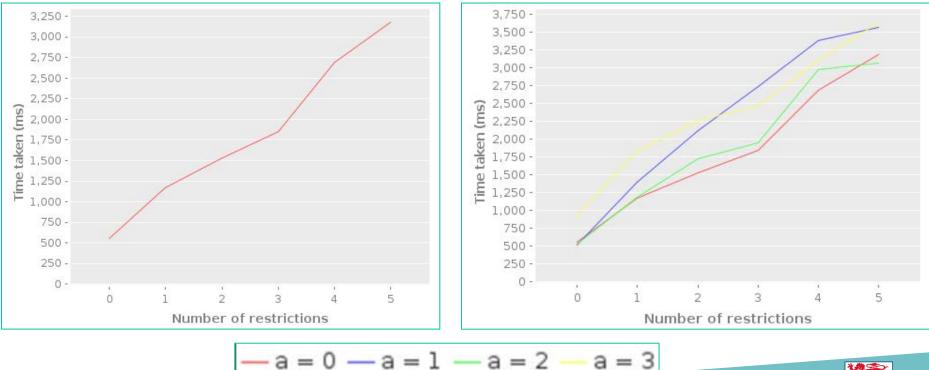
"Affects" models


Affects 2 ObjectProperty – uses the sequence ODP	(defclass 46,XX,del(1)(q42) :super (exactly 1 hasEvent (and Deletion (some hasBreakPoint 1q42 1qTer))) (some affects (and 1q42 (some directlyPrecedes 1q43) (some directlyPrecedes 1q44)))
<u>Affects 3</u> DataProperty – includes the assignation of ordinal numbers to the chromosome bands	(defclass 46,XX,del(1)(q42) :super (exactly 1 hasEvent (and Deletion (some hasBreakPoint 1q42 1qTer))) (only affects (or 11 12 13))

Results

How does the ontology scale as the number of karyotypes increases?

Do the models scale in the same way as the number of karyotypes increases?



Jennifer D. Warrender

Results

How does the ontology scale as the number of restrictions increases?

Do the models scale in the same way as the number of restrictions increases?

