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∂cW∆1 , ∂cW∆2 totally disconnected

∆1∩∆2 is contained in an induced subgraph∆′ of∆ with ∂cW∆′ = ∅,

Theorem (K.):

C5 = ∂cWC5 = S1

Example:

∆1 ∆2



5

– Institute of Theoretical Informatics
Algorithmics Group

Surprising circles in contracting boundaries of RACGs

S1

Question: Let ∆ be a graph. When does ∂cW∆ contain a circle?

length ≥ 5

∂cW∆∆
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totally disconnected (Charney, Sultan)

Question: Let ∆ be a graph. When does ∂cW∆ contain a circle?

burst cycle!

length ≥ 5

∆

S1

∂cW∆
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Surprising circles in contracting boundaries of RACGs

Theorem (Graeber, Lazarovich, Stark, K.):

Question: Let all cycles of length at least 5 in ∆ be burst. ∂cW∆ =?

Conjecture (Tran): ∂cW∆ is totally disconnected.

Further example (Tran):

∆1 := is a counterexample
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Surprising circles in contracting boundaries of RACGs

Question: Let ∆ be a graph without intact cycles. ∂cΣ∆ =?

∆4 =

Lemma:

Tran:

There exists a quasi-isometrically embedded hyperbolic plane H
s.t. ∂cH ↪→ ∂cΣ∆4 (apply Thm of Mackay–Sisto);

there does not exist a finite-index reflection subgroup of W∆4

whose defining graph contains an induced cycle of length at least four
which is not burst;

Σ∆4 is virtually a finite volume hyperbolic three manifold with cusps
(apply Thm of Haulmark–Nguyen–Tran);

∂cΣ∆4 is an ω-Sierpinski curve (by Thm of Charney–Cordes–Sisto).


