

(Annette Karrer, Technion – Israel Institute of Technology)

graph
$$\Delta = (V, E)$$
group $W_{\Delta} := \langle V \mid v^2 = \text{id } \forall v \in V, \text{cube-relation(e)} \forall e \in E \rangle$

 Δ_1, Δ_2 two graphs

 $\partial_{c} W_{\Delta_{1}} \neq \partial_{c} W_{\Delta_{2}}$

 $\partial_c W_{\Delta_1} \neq \partial_c W_{\Delta_2} \Rightarrow W_{\Delta_1}$ and W_{Δ_2} have distinct large-scale geometry

Goal

Questions:

Goal

Questions:

• When is $\partial_c W_{\Delta}$ totally disconnected? (join work with Marius Graeber, Nir Lazarovich, Emily Stark

• When does $\partial_c W_\Delta$ contain a circle?

Goal

Theorem (Charney–Sultan):

then $\partial_c W_{\Delta}$ is totally disconnected.

Theorem (Charney–Sultan):

then $\partial_c W_{\Delta}$ is totally disconnected.

Observations:

Theorem (Charney–Sultan):

then $\partial_c W_{\Delta}$ is totally disconnected.

Observations:

• $\partial_c W_{\Delta_1}$, $\partial_c W_{\Delta_2}$ totally disconnected

then $\partial_c W_{\Delta}$ is totally disconnected.

• $\partial_c W_{\Delta_1}$, $\partial_c W_{\Delta_2}$ totally disconnected • $\Delta_1 \cap \Delta_2$ is contained in an induced subgraph Δ' of Δ with $\partial_c W_{\Delta'} = \emptyset$, then $\partial_c W_{\Delta}$ is totally disconnected.

■ $\partial_c W_{\Delta_1}$, $\partial_c W_{\Delta_2}$ totally disconnected ■ $\Delta_1 \cap \Delta_2$ is contained in an induced subgraph Δ' of Δ with $\partial_c W_{\Delta'} = \emptyset$, then $\partial_c W_{\Delta}$ is totally disconnected.

Example (Russell–Spriano–Tran): $\partial_c W_{\bar{\Delta}}$ is totally disconnected where

• $\partial_c W_{\Delta_1}$, $\partial_c W_{\Delta_2}$ totally disconnected

• $\Delta_1 \cap \Delta_2$ is contained in an induced subgraph Δ' of Δ with $\partial_c W_{\Delta'} = \emptyset$,

then $\partial_c W_{\Delta}$ is totally disconnected.

Example (Russell–Spriano–Tran):

 $\partial_{c} W_{\bar{\Delta}}$ is totally disconnected where

• $\partial_c W_{\Delta_1}$, $\partial_c W_{\Delta_2}$ totally disconnected

• $\Delta_1 \cap \Delta_2$ is contained in an induced subgraph Δ' of Δ with $\partial_c W_{\Delta'} = \emptyset$,

then $\partial_c W_{\Delta}$ is totally disconnected.

Example:

Question: Let Δ be a graph. When does $\partial_c W_{\Delta}$ contain a circle?

Question: Let Δ be a graph. When does $\partial_c W_{\Delta}$ contain a circle?

Question: Let Δ be a graph. When does $\partial_c W_{\Delta}$ contain a circle?

Question: Let all cycles of length at least 5 in Δ be burst. $\partial_c W_{\Delta} = ?$

Question: Let all cycles of length at least 5 in Δ be burst. $\partial_c W_{\Delta} = ?$

Conjecture (Tran): $\partial_c W_{\Delta}$ is totally disconnected.

Question: Let all cycles of length at least 5 in Δ be burst. $\partial_c W_{\Delta} = ?$

Conjecture (Tran): $\partial_c W_{\Delta}$ is totally disconnected.

Theorem (Graeber, Lazarovich, Stark, K.):

Further example (Tran):

Thank you for your attention!

Question: Let Δ be a graph without intact cycles. $\partial_c \Sigma_{\Delta} = ?$

Lemma:

- There exists a quasi-isometrically embedded hyperbolic plane \mathcal{H} s.t. $\partial_c \mathcal{H} \hookrightarrow \partial_c \Sigma_{\Delta_4}$ (apply Thm of Mackay–Sisto);
- there does not exist a finite-index reflection subgroup of W_{∆₄} whose defining graph contains an induced cycle of length at least four which is not burst;
- Σ_{Δ4} is virtually a finite volume hyperbolic three manifold with cusps (apply Thm of Haulmark–Nguyen–Tran);
- $\partial_c \Sigma_{\Delta_4}$ is an ω -Sierpinski curve (by Thm of Charney–Cordes–Sisto).