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Helly groups

Examples of groups acting geometrically on Helly graphs:
(Gromov) hyperbolic groups, (cocompact) CAT(0) cubical groups,
uniform lattices in many Euclidean buildings, FC-type Artin groups,
finite-type Garside groups, fin. pres. graphical C(4)-T(4) small cancellation
groups,. . .

Group theoretic constructions preserving Hellyness:
direct product, graph product, free product (and HNN extension) with
amalgamation over finite subgroups, some graphs of groups, relative
hyperbolicity, quotient by finite normal subgroup, . . .

Properties of Helly groups:
biautomaticity, finiteness properties, finitely many conjugacy classes of
finite subgroups, Farrell-Jones conjecture, coarse Baum-Connes conjecture,
EZ-boundary, . . .
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Outline of the course:

1 Helly property, injective metric spaces, Helly graphs

2 Features of Helly graphs

3 Helly groups: examples and properties
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Helly property

Definition (Helly property)

A family of subsets of a set has a (finite) Helly property if every (finite)
subfamily of pairwise intersecting subsets has a nonempty intersection.

Example (Helly
families)

1 axis-parallel
boxes in Rn

2 finite subtrees of
a tree

3 a finite family of
half-spaces of a
CAT(0) cube
complex.
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Helly property - examples

Example (Gated subsets)

A subset Y of a metric space (X , d) is
gated if for every point x ∈ X there exists
a vertex x ′ ∈ Y , called the gate of x ,
such that x ′ ∈ I (x , y), for every y ∈ Y .
A finite family of gated subsets has the
Helly property.

Example (Intervals in lattices)

A lattice is a poset (P,6) with g.l.b.
(called meet) and l.u.b. (join) for each
pair of elements. An interval in a lattice
is a subset of the form {x |a 6 x 6 b}. A
finite family of intervals in a lattice has
the Helly property.

x

x′

y1

y2

X

Y
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Injective metric spaces
Let (X , d) be a geodesic metric space

Definition (Injective space)

X is injective if the family of balls has the Helly property.

Example

1 (Rn, d∞)

2 an R-tree

3 (R2, d2) is not injective!

Remark

Actually, the definition of an injective space above is not so proper...
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Injective spaces

Theorem (Characterizations of injectivity)

Let (X , d) be a geodesic metric space. TFAE:

1 X is injective

2 X is hyperconvex

3 [Aronszajn-Panitchpakdi, 1956] (Y ,X ) has the extension property, for
every metric space Y (for the category of metric spaces with
1-Lipschitz maps)

4 X is an absolute retract (for the category of metric spaces with
1-Lipschitz maps)

X
Y
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Injective hull

Definition (Injective hull)

An injective hull (or tight span, or injective envelope, or hyperconvex hull)
of (X , d) is a pair (e,E (X )) where e : X → E (X ) is an isometric
embedding into an injective metric space E (X ), and such that no injective
proper subspace of E (X ) contains e(X ). Two injective hulls e : X → E (X )
and f : X → E ′(X ) are equivalent if they are related by an isometry
i : E (X )→ E ′(X ).

Theorem (Isbell 1964)

Every metric space (X , d) has an injective hull and all its injective hulls are
equivalent.

Remark

Injective hulls were rediscovered by Dress in 1984, Chrobak-Larmore in
1994...
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Isbell’s construction

Let (X , d) be a metric space. Consider the space RX of real-valued
functions with the supremum metric d(f , g) = supx∈X |f (x)− g(x)|.

The Kuratowski embedding e : X → RX : x 7→ d(x , ·) is an isometric
embedding.

A function f ∈ RX is called a metric form if f (x) + f (y) > d(x , y). It is
extremal if it is point-wise minimal.

We define E (X ) as the space of extremal metric forms.

(e,E (X )) is the injective hull of X .
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Injective hulls - examples
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Injective hulls - examples

(0, a+ b, c+ a)

(a+ b, 0, b+ c)

(c+ a, b+ c, 0)

(a, b, c)

a

b

c
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Geodesic bicombing

Definition (Geodesic bicombing)

A geodesic bicombing on a metric space (X , d) is a
map

σ : X × X × [0, 1]→ X ,

such that for every pair (x , y) ∈ X × X the function
σxy := σ(x , y , ·) is a constant speed geodesic from
x to y . We call σ convex if the function
t 7→ d(σxy (t), σx ′y ′(t)) is convex for all
x , y , x ′, y ′ ∈ X . The bicombing σ is consistent if
σpq(λ) = σxy ((1− λ)s + λt), for all x , y ∈ X ,
0 ≤ s ≤ t ≤ 1, p := σxy (s), q := σxy (t), and
λ ∈ [0, 1]. It is called reversible if
σxy (t) = σyx(1− t) for all x , y ∈ X and t ∈ [0, 1].
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Bicombing in (R2, d∞)
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Bicombing in (R2, d∞)
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Bicombing in (R2, d∞)
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Bicombing in injective spaces

Theorem (Descombes-Lang, 2016)

A proper injective metric space X of finite combinatorial dimension admits
a unique convex, consistent, reversible geodesic bicombing.

Proof.

Take the ‘convex combination’ bicombing in the space of metric forms.
Project it to X = E (X ).
Improve the bicombing.

Remark

In particular, the bicombing above is invariant under automorphisms.
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Properties of injective metric spaces

1 contractibility

2 fixed point properties for finite group actions

3 classification of isometries

4 Flat Torus theorem [Descombes-Lang]

5 characterization of hyperbolicity via non-existence of flats

...
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Helly graphs
All graphs Γ = (V (Γ),E (Γ)) are simplicial. We view Γ as a metric space
(V (Γ), d), where d is a path metric.

Definition (Helly graph)

A graph is Helly if the family of its (combinatorial) balls has the Helly
property.
A graph is clique-Helly if the family of its maximal cliques has the Helly
property.

Example

clique-Helly not Helly not clique-Helly Helly
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Helly graphs - example

Example (Thickening of a CAT(0) cube complex)
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