Helly graphs and groups Young Geometric Group Theory X

Damian Osajda

Uniwersytet Wrocławski

July 29, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

All graphs $\Gamma = (V(\Gamma), E(\Gamma))$ are *simplicial* and connected. We view Γ as a metric space $(V(\Gamma), d)$, where d is a path metric.

All graphs $\Gamma = (V(\Gamma), E(\Gamma))$ are *simplicial* and connected. We view Γ as a metric space $(V(\Gamma), d)$, where d is a path metric.

Definition (Helly graph)

A graph is *Helly* if the family of its (combinatorial) balls has the Helly property.

< /⊒ ► < Ξ ► <

All graphs $\Gamma = (V(\Gamma), E(\Gamma))$ are *simplicial* and connected. We view Γ as a metric space $(V(\Gamma), d)$, where d is a path metric.

Definition (Helly graph)

A graph is *Helly* if the family of its (combinatorial) balls has the Helly property.

A graph is *clique-Helly* if the family of its maximal cliques has the Helly property.

All graphs $\Gamma = (V(\Gamma), E(\Gamma))$ are *simplicial* and connected. We view Γ as a metric space $(V(\Gamma), d)$, where d is a path metric.

Definition (Helly graph)

A graph is *Helly* if the family of its (combinatorial) balls has the Helly property.

A graph is *clique-Helly* if the family of its maximal cliques has the Helly property.

Helly graphs - example

Example (Thickening of a CAT(0) cube complex)

Damian Osajda (Uniwersytet Wrocławski)

Helly graphs and groups

Helly graphs - example

Example (Thickening of a CAT(0) cube complex)

Damian Osajda (Uniwersytet Wrocławski)

Helly graphs - example

Example (Thickening of a CAT(0) cube complex)

イロト イヨト イヨト イヨト

Definition (Weakly modular graph)

A graph is *weakly modular* if, for every three vertices u, v, w with n := d(u, v) = d(u, w) the following two conditions are satisfied:

- (T) if $v \sim w$ then there exists $x \sim u, v$ with d(u, x) = n - 1
- (Q) if there exists $z \sim v, w$ with d(u, z) = n + 1 then there exists $x \sim u, v$ with d(u, x) = n 1

.

Definition (Weakly modular graph)

A graph is *weakly modular* if, for every three vertices u, v, w with n := d(u, v) = d(u, w) the following two conditions are satisfied:

- (T) if $v \sim w$ then there exists $x \sim u, v$ with d(u, x) = n - 1
- (Q) if there exists $z \sim v, w$ with d(u, z) = n + 1 then there exists $x \sim u, v$ with d(u, x) = n 1

Definition (Weakly modular graph)

A graph is *weakly modular* if, for every three vertices u, v, w with n := d(u, v) = d(u, w) the following two conditions are satisfied:

- (T) if $v \sim w$ then there exists $x \sim u, v$ with d(u, x) = n - 1
- (Q) if there exists $z \sim v, w$ with d(u, z) = n + 1 then there exists $x \sim u, v$ with d(u, x) = n 1

Theorem

Helly graphs are weakly modular.

)

→ ∃ →

u

u

Theorem

Helly graphs are weakly modular. Moreover, they satisfy a stronger version of (Q):

•
$$(Q')$$
 if there exists $z \sim v$, w with $d(u, z) = n + 1$ then there exists $x \sim u$, v with $d(u, x) = n - 1$, and $x' \sim z$, v , w , x

Theorem

Helly graphs are weakly modular. Moreover, they satisfy a stronger version of (Q):

• (Q') if there exists $z \sim v, w$ with d(u, z) = n + 1 then there exists $x \sim u, v$ with d(u, x) = n - 1, and $x' \sim z, v, w, x$

Theorem

Helly graphs are weakly modular. Moreover, they satisfy a stronger version of (Q):

• (Q') if there exists $z \sim v, w$ with d(u, z) = n + 1 then there exists $x \sim u, v$ with d(u, x) = n - 1, and $x' \sim z, v, w, x$

Corollary

The triangle complex of a Helly graph is simply connected. The isoperimetric function is at most quadratic.

O

Dismantlability

Definition (Dismantlability)

A finite graph Γ is *dismantlable* if its vertices can be enumerated as $v_1, v_2, v_3, ..., v_n$ such that for every $1 < k \leq n$ the vertex v_k is *dominated* in the subgraph induced by v_1, \ldots, v_k .

Dismantlability

Definition (Dismantlability)

A finite graph Γ is *dismantlable* if its vertices can be enumerated as $v_1, v_2, v_3, ..., v_n$ such that for every $1 < k \leq n$ the vertex v_k is *dominated* in the subgraph induced by v_1, \ldots, v_k .

Theorem

Balls in locally finite Helly graphs are dismantlable.

Dismantlability

Definition (Dismantlability)

A finite graph Γ is *dismantlable* if its vertices can be enumerated as $v_1, v_2, v_3, ..., v_n$ such that for every $1 < k \leq n$ the vertex v_k is *dominated* in the subgraph induced by $v_1, ..., v_k$.

Theorem

Balls in locally finite Helly graphs are dismantlable.

Corollary

The clique complex $X(\Gamma)$ of a locally finite Helly graph Γ is contractible. Finite groups acting on such Helly graphs fix cliques. Fixed point sets are contractible.

Theorem (Characterizations of Helly graphs)

For a locally finite graph Γ TFEA:

Ο Γ is Helly

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Characterizations of Helly graphs)

For a locally finite graph Γ TFEA:

- Γ is Helly
- Γ is an absolute retract (in the category of simplicial graphs with simplicial maps)

.

Theorem (Characterizations of Helly graphs)

For a locally finite graph Γ TFEA:

- Γ is Helly
- Γ is an absolute retract (in the category of simplicial graphs with simplicial maps)
- **(3)** Γ is a retract of a strong product of paths $\boxtimes L_i$

Theorem (Characterizations of Helly graphs)

For a locally finite graph Γ TFEA:

- Γ is Helly
- Γ is an absolute retract (in the category of simplicial graphs with simplicial maps)
- **③** Γ is a retract of a strong product of paths $\boxtimes L_i$
- Is weakly modular with dismantlable balls

Theorem (Characterizations of Helly graphs)

For a locally finite graph Γ TFEA:

- Γ is Helly
- Γ is an absolute retract (in the category of simplicial graphs with simplicial maps)
- **③** Γ is a retract of a strong product of paths $\boxtimes L_i$
- \bigcirc Γ is weakly modular with dismantlable balls
- Γ is weakly modular 1-Helly graph

Theorem (Characterizations of Helly graphs)

For a locally finite graph Γ TFEA:

- Γ is Helly
- Γ is an absolute retract (in the category of simplicial graphs with simplicial maps)
- **③** Γ is a retract of a strong product of paths $\boxtimes L_i$
- Is weakly modular with dismantlable balls
- Γ is weakly modular 1-Helly graph

Theorem (Local-to-global characterization)

A graph is Helly iff it is clique-Helly and its triangle complex is simply connected.

< □ > < □ > < □ > < □ > < □ > < □ >

Proof of the local-to-global characterization

Damian Osajda (Uniwersytet Wrocławski)

Helly graphs and groups

Hely groups

Definition (Helly groups)

A group is *Helly* if it acts geometrically, that is, properly and cocompactly on a Helly graph.

Hely groups

Definition (Helly groups)

A group is *Helly* if it acts geometrically, that is, properly and cocompactly on a Helly graph.

Example

Cocompact CAT(0) cubical groups are Helly. The proof goes via convexity of balls or via the local-to-global characterization.

Finite-type Artin groups

Definition (Artin group)

A finite simplicial graph Γ with edges labelled by $\{2, 3, 4, \ldots\}$ defines a presentation of the *Artin group* A_{Γ} :

 $A_{\Gamma} = \langle a \in V(\Gamma) \mid \underbrace{aba \cdots}_{m} = \underbrace{bab \cdots}_{m} \text{ for each edge } ab \text{ labelled with } m \rangle$

- **(周) (3) (3)**

Finite-type Artin groups

Definition (Artin group)

A finite simplicial graph Γ with edges labelled by $\{2, 3, 4, \ldots\}$ defines a presentation of the Artin group A_{Γ} :

 $A_{\Gamma} = \langle a \in V(\Gamma) \mid \underbrace{aba \cdots}_{m} = \underbrace{bab \cdots}_{m} \text{ for each edge } ab \text{ labelled with } m \rangle$

Example

Finite-type Artin groups

Definition (Artin group)

A finite simplicial graph Γ with edges labelled by $\{2, 3, 4, \ldots\}$ defines a presentation of the Artin group A_{Γ} :

 $A_{\Gamma} = \langle a \in V(\Gamma) \mid \underbrace{aba \cdots}_{m} = \underbrace{bab \cdots}_{m} \text{ for each edge } ab \text{ labelled with } m \rangle$

Example $a \leftarrow 2 \rightarrow b \qquad a \leftarrow 3 \rightarrow b$ $\Gamma_1 \qquad \Gamma_2 \qquad a \checkmark$ $A_{\Gamma_1} = \langle a, b \mid ab = ba \rangle \cong \mathbb{Z}^2; \ A_{\Gamma_2} = \langle a, b \mid aba = bab \rangle$ $A_{\Gamma_2} = \langle a, b, c \mid aba = bab, bcb = cbc, cac = aca \rangle$ Damian Osajda (Uniwersytet Wrocławski) July 29, 2021 17 / 38

There is an epimorphism $A_{\Gamma} \rightarrow C_{\Gamma}$ to the associated *Coxeter group* C_{Γ} - add relations requiring generators to be involutions.

< □ > < 同 > < 回 > < 回 > < 回 >

There is an epimorphism $A_{\Gamma} \rightarrow C_{\Gamma}$ to the associated *Coxeter group* C_{Γ} - add relations requiring generators to be involutions.

Definition

An Artin group A_{Γ} is of *finite type* if the Coxeter group C_{Γ} is finite.

There is an epimorphism $A_{\Gamma} \rightarrow C_{\Gamma}$ to the associated *Coxeter group* C_{Γ} - add relations requiring generators to be involutions.

Definition

An Artin group A_{Γ} is of *finite type* if the Coxeter group C_{Γ} is finite.

イロト 不得 トイヨト イヨト 二日

There is an epimorphism $A_{\Gamma} \rightarrow C_{\Gamma}$ to the associated *Coxeter group* C_{Γ} - add relations requiring generators to be involutions.

Definition

An Artin group A_{Γ} is of *finite type* if the Coxeter group C_{Γ} is finite.

イロト 不得下 イヨト イヨト 二日

Theorem

Finite-type Artin groups are Helly.

A D N A B N A B N A B N

Theorem

Finite-type Artin groups are Helly.

Proof.

Consider a 'thickening' of the Cayley complex:

Artin groups

Theorem

Finite-type Artin groups are Helly.

Proof.

Consider a 'thickening' of the Cayley complex:

Garside groups

Theorem

FC-type Artin groups are Helly.

< □ > < 同 > < 回 > < 回 > < 回 >

Garside groups

Theorem

FC-type Artin groups are Helly.

Theorem

Weak Garside groups of finite type are Helly.

▲ □ ▶ ▲ □ ▶ ▲ □

C(4)-T(4) small cancellation groups

Theorem

Finitely presented C(4)-T(4) (graphical) small cancellation groups are Helly.

A (1) > A (2) > A

C(4)-T(4) small cancellation groups

Theorem

Finitely presented C(4)-T(4) (graphical) small cancellation groups are Helly.

Proof.

Consider a 'thickening' of the Cayley complex:

Buildings

Theorem

Uniform lattices in Euclidean buildings of type C are Helly.

A D N A B N A B N A B N

Buildings

Theorem

Uniform lattices in Euclidean buildings of type C are Helly.

Proof.

Consider a 'thickening' of the building:

Theorem (Properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

 The clique complex X(Γ) of Γ is a finite-dimensional cocompact model for the classifying space <u>E</u>G for proper actions. As a particular case, G is always of type F_∞ and of type F when it is torsion-free.

Theorem (Properties of Helly groups)

- The clique complex X(Γ) of Γ is a finite-dimensional cocompact model for the classifying space <u>E</u>G for proper actions. As a particular case, G is always of type F_∞ and of type F when it is torsion-free.
- **Q** *G* has finitely many conjugacy classes of finite subgroups.

Theorem (Properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- The clique complex X(Γ) of Γ is a finite-dimensional cocompact model for the classifying space <u>E</u>G for proper actions. As a particular case, G is always of type F_∞ and of type F when it is torsion-free.
- **Q** G has finitely many conjugacy classes of finite subgroups.
- G is (Gromov) hyperbolic if and only if Γ does not contain an isometrically embedded infinite l_∞-grid.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- The clique complex X(Γ) of Γ is a finite-dimensional cocompact model for the classifying space <u>E</u>G for proper actions. As a particular case, G is always of type F_∞ and of type F when it is torsion-free.
- **2** *G* has finitely many conjugacy classes of finite subgroups.
- G is (Gromov) hyperbolic if and only if Γ does not contain an isometrically embedded infinite l_∞-grid.
- G has at most quadratic Dehn function.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let G, G_1, G_2, \ldots, G_n be Helly groups. Then:

a free product G₁ *_F G₂ of G₁, G₂ with amalgamation over a finite subgroup F, and the HNN-extension G_{1*F} over F are Helly;

Theorem

Let G, G_1, G_2, \ldots, G_n be Helly groups. Then:

- a free product G₁ *_F G₂ of G₁, G₂ with amalgamation over a finite subgroup F, and the HNN-extension G_{1*F} over F are Helly;
- every graph product of G_1, \ldots, G_n is Helly, in particular, the direct product $G_1 \times \cdots \times G_n$ is Helly;

< ロト < 同ト < ヨト < ヨト

Theorem

Let G, G_1, G_2, \ldots, G_n be Helly groups. Then:

- a free product G₁ *_F G₂ of G₁, G₂ with amalgamation over a finite subgroup F, and the HNN-extension G_{1*F} over F are Helly;
- every graph product of G_1, \ldots, G_n is Helly, in particular, the direct product $G_1 \times \cdots \times G_n$ is Helly;
- **③** the quotient Γ/N by a finite normal subgroup $N \lhd \Gamma$ is Helly.

< ロト < 同ト < ヨト < ヨト

Theorem

Let G, G_1, G_2, \ldots, G_n be Helly groups. Then:

- a free product G₁ *_F G₂ of G₁, G₂ with amalgamation over a finite subgroup F, and the HNN-extension G_{1*F} over F are Helly;
- every graph product of G_1, \ldots, G_n is Helly, in particular, the direct product $G_1 \times \cdots \times G_n$ is Helly;
- **③** the quotient Γ/N by a finite normal subgroup $N \lhd \Gamma$ is Helly.

Proof.

"Amalgamation of Helly graphs along a vertex is Helly. Strong product of Helly graphs is Helly. Fixed-point set is Helly."

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

The Kuratowski embedding $e \colon \Gamma \to \mathbb{Z}^{\Gamma} \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

The Kuratowski embedding $e \colon \Gamma \to \mathbb{Z}^{\Gamma} \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

A function $f \in \mathbb{Z}^{\Gamma}$ is called an *integral metric form* if $f(x) + f(y) \ge d(x, y)$. It is *extremal* if it is point-wise minimal.

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

The Kuratowski embedding $e \colon \Gamma \to \mathbb{Z}^{\Gamma} \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

A function $f \in \mathbb{Z}^{\Gamma}$ is called an *integral metric form* if $f(x) + f(y) \ge d(x, y)$. It is *extremal* if it is point-wise minimal. We define Helly(Γ) as the space of extremal metric forms, with the isometric embedding e

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

The Kuratowski embedding $e \colon \Gamma \to \mathbb{Z}^{\Gamma} \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

A function $f \in \mathbb{Z}^{\Gamma}$ is called an *integral metric form* if $f(x) + f(y) \ge d(x, y)$. It is *extremal* if it is point-wise minimal. We define Helly(Γ) as the space of extremal metric forms, with the isometric embedding e

Additionaly, $\operatorname{Helly}(\Gamma) = E(\Gamma) \cap \mathbb{Z}^{\Gamma}$.

Theorem

Let Γ be a locally finite Helly graph.

• The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of *n*-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \ge 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \le 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.

• < = • < = •

Theorem

Let Γ be a locally finite Helly graph.

- The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \ge 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \le 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull E(Γ).

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let Γ be a locally finite Helly graph.

- The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \ge 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \le 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull E(Γ).

Corollary

Helly groups act geometrically on spaces with convex, reversible, consistent geodesic bicombing

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let Γ be a locally finite Helly graph.

- The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \ge 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \le 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull E(Γ).

Corollary

Helly groups act geometrically on spaces with convex, reversible, consistent geodesic bicombing = act geometrically on CAT(0) -like spaces

イロト イボト イヨト イヨト

Theorem (Further properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

• G admits an EZ-boundary $\partial \Gamma$.

Theorem (Further properties of Helly groups)

- **1** G admits an EZ-boundary $\partial \Gamma$.
- **2** *G* satisfies the Farrell-Jones conjecture with finite wreath products.

Theorem (Further properties of Helly groups)

- G admits an EZ-boundary $\partial \Gamma$.
- **②** *G* satisfies the Farrell-Jones conjecture with finite wreath products.
- **③** G satisfies the coarse Baum-Connes conjecture.

Theorem (Further properties of Helly groups)

- G admits an EZ-boundary $\partial \Gamma$.
- **a** *G* satisfies the Farrell-Jones conjecture with finite wreath products.
- I G satisfies the coarse Baum-Connes conjecture.
- The asymptotic cones of G are contractible.

Theorem (Further properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- G admits an EZ-boundary $\partial \Gamma$.
- **②** G satisfies the Farrell-Jones conjecture with finite wreath products.
- I G satisfies the coarse Baum-Connes conjecture.
- The asymptotic cones of G are contractible.

Proof.

Follows immediately from results by Descombes-Lang, Kasprowski-Rüping, Fukaya-Oguni.

β -stable intervals

Definition (Lang)

For $\beta \geq 1$, the graph Γ has β -stable intervals if for every triple of vertices w, v, v' with $v \sim v'$, we have $d_H(I(w, v), I(w, v')) \leq \beta$, where d_H denotes the Hausdorff distance.

Remark

This property is equivalent to the FFTP.

A D N A B N A B N A B N

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n \geq 1$.

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n \geq 1$.

Theorem

Weakly modular graphs (in particualar, Helly graphs) have 1-stable intervals.

< □ > < □ > < □ > < □ > < □ > < □ >

Helly graphs and groups

July 29, 2021 31 / 38

Helly graphs and groups

July 29, 2021 34 / 38
