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Injective hull vs Hellyfication

Theorem

Let Γ be a locally finite Helly graph.

(1) The injective hull E (Γ) of Γ is proper and has the structure of a locally
finite polyhedral complex with only finitely many isometry types of
n-cells, isometric to injective polytopes in (Rn, d∞), for every n ≥ 1.
Moreover, dH(E (Γ), e(Γ)) ≤ 1. Furthermore, if Γ has uniformly
bounded degrees, then E (Γ) has finite combinatorial dimension.

(2) A group acting cocompactly, properly or geometrically on Γ acts,
respectively, cocompactly, properly or geometrically on its injective
hull E (Γ).

Corollary

Helly groups act geometrically on spaces with convex, reversible,
consistent geodesic bicombing
= act geometrically on CAT(0) -like spaces
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β-stable intervals

Definition (Lang)

For β ≥ 1, the graph Γ has β-stable intervals if for every triple of vertices
w , v , v ′ with v ∼ v ′, we have dH(I (w , v), I (w , v ′)) ≤ β, where dH denotes
the Hausdorff distance.

w

v

v′

≤ β

Remark

This property is equivalent to the FFTP.
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Graphs with β-stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β-stable intervals. Then the injective
hull of Γ is proper (that is, bounded closed subsets are compact) and has
the structure of a locally finite polyhedral complex with only finitely many
isometry types of n-cells, isometric to injective polytopes in (Rn, d∞), for
every n ≥ 1.

Theorem

Weakly modular graphs (in particular, Helly graphs) have 1-stable
intervals.

Example

For Γ being the 1-skeleton of a regular cubical grid in E3 or a regular
triangulation of E2 we have dH(e(Γ),E (Γ)) =∞, equivalently,
dH(e(Γ),Helly(Γ)) =∞.
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Coarse Helly

Definition

A metric space (X , d) has the coarse Helly property if there exists δ ≥ 0
such that for any family {Bri (xi ) : i ∈ I} of pairwise intersecting closed
balls of X , the intersection

⋂
i∈I Bri+δ(xi ) is not empty.

Theorem

A metric space (X , d) has the coarse Helly property iff
dH(e(X ),E (X )) <∞.
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Coarse Helly=“dH(e(X ),E (X )) <∞”

Theorem

A geodesic metric space (X , d) has the coarse Helly property iff
dH(e(X ),E (X )) <∞.

Proof.

(⇒) Let f ∈ E (X ).

By the coarse Helly property (applied to the radius
function f ) there exists a point z ∈ X such that d(z , x) ≤ f (x) + δ for any
x ∈ X . We claim that d∞(f , e(z)) ≤ δ. We have
d∞(f , e(z)) = supx∈X |f (x)− d(x , z)|. By the choice of z in Bf (x)+δ(x),
d(x , z)− f (x) ≤ δ. We show now that f (x)− d(x , z) ≤ δ. Assume by
contradiction that f (x)− d(x , z) > δ. Let ε = 1

2 (f (x)− d(x , z)− δ) and
observe that f (x) > d(x , z) + δ + ε. By extremality of f , there exists
y ∈ X such that f (x) + f (y) < d(x , y) + ε. Since z ∈ Bf (y)+δ(y), we have
f (y) ≥ d(y , z)− δ, and consequently, we have
f (x)+f (y) > d(x , z)+δ+ε+d(y , z)−δ = d(x , z)+d(y , z)+ε ≥ d(x , y)+ε,
a contradiction.
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(Coarse) Helly groups

Theorem (Lang, CCHGO)

(Gromov) hyperbolic groups are Helly.

Theorem (O.-Valiunas)

Finitely generated groups hyperbolic relative to (coarse) Helly groups are
(coarse) Helly.

Theorem (O.-Valiunas)

‘Strongly quasi-convex’ subgroups of Helly groups are Helly.

Theorem (Haettel-Hoda-Petyt)

Hierarchically hyperbolic groups (in particular mapping class groups) act
metrically properly and cocompactly on coarse Helly spaces. In particular,
they are semihyperbolic.
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Biautomaticity

Biautomaticity is a strong NPC-like property implying numerous
algorithmic, algebraic, and geometric features of a group.

Roughly, it is about the possibility of choosing algorithmically a nice
representative word for every element of the group.

Theorem (Świa̧tkowski)

Let G be group acting geometrically on a graph Γ and let P be a path
system in Γ satisfying the following conditions:

(1) P is locally recognized;

(2) there exists v0 ∈ V (Γ) such that any two vertices from the orbit
G · v0 are connected by a path from P;

(3) P satisfies the 2–sided fellow traveler property.

Then G is biautomatic.
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Let G be group acting geometrically on a graph Γ and let P be a path
system in Γ satisfying the following conditions:

(1) P is locally recognized;

(2) there exists v0 ∈ V (Γ) such that any two vertices from the orbit
G · v0 are connected by a path from P;

(3) P satisfies the 2–sided fellow traveler property.

Then G is biautomatic.
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Theorem (Świa̧tkowski)

Let G be group acting geometrically on a graph Γ and let P be a path
system in Γ satisfying the following conditions:

(1) P is locally recognized;

(2) there exists v0 ∈ V (Γ) such that any two vertices from the orbit
G · v0 are connected by a path from P;

(3) P satisfies the 2–sided fellow traveler property.

Then G is biautomatic.

Damian Osajda (Uniwersytet Wroc lawski) Helly graphs and groups July 30, 2021 9 / 19



Biautomaticity

Example (Biautomaticity of CAT(0) cubical groups)

Damian Osajda (Uniwersytet Wroc lawski) Helly graphs and groups July 30, 2021 10 / 19



Biautomaticity

Example (Biautomaticity of CAT(0) cubical groups)

Damian Osajda (Uniwersytet Wroc lawski) Helly graphs and groups July 30, 2021 11 / 19



Helly groups are biautomatic

Theorem

Helly groups are biautomatic.

Proof: Let G act geometrically on Γ. We will construct a system P of
paths of simplices in Γ, satisfying conditions required by Świa̧tkowski’s
theorem.
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Construction of P

We define: B∗k (S) :=
⋂

s∈S Bk(s),

d̄(τ, σ) := max{d(t, s) : t ∈ τ, s ∈ σ},
for d̄(τ, σ) = k ≥ 2, we define:
Rτ (σ) := B∗k (τ) ∩ B∗1 (σ) and
fτ (σ) := B∗k−1(τ) ∩ B∗1 (Rτ (σ))

σ

τ

Rτ(σ)

fτ(σ)

k

k − 1
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Construction of P

We define: B∗k (S) :=
⋂

s∈S Bk(s),
d̄(τ, σ) := max{d(t, s) : t ∈ τ, s ∈ σ},
for d̄(τ, σ) = k ≥ 2, we define:
Rτ (σ) := B∗k (τ) ∩ B∗1 (σ) and
fτ (σ) := B∗k−1(τ) ∩ B∗1 (Rτ (σ))
fτ (σ) is called the imprint of σ with respect
to τ . It is a clique.
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Construction of P
Definition (Normal clique path)

A sequence of cliques (σ0, σ1, . . . , σk) of a Helly graph Γ is called a normal
clique-path if the following local conditions hold:

1 for any 0 ≤ i ≤ k − 1, σi and σi+1 are disjoint and σi ∪ σi+1 is a
clique of Γ,

2 for any 1 ≤ i ≤ k − 1, σi−1 and σi+1 are at uniform-distance 2,

3 for any 1 ≤ i ≤ k − 1, σi = fσi−1(σi+1).
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Construction of P

Theorem

For any pair τ, σ of cliques of a Helly graph Γ at uniform distance k, there
exists a unique normal clique-path γτσ = (τ = σ0, σ1, σ2, . . . , σk = σ),
whose cliques are given by

σi = fτ (σi+1) for each i = k − 1, . . . , 2, 1,

and any sequence of vertices P = (s0, s1, . . . , sk) such that si ∈ σi for
0 ≤ i ≤ k is a shortest path from s0 to sk . In particular, any two vertices
p, q of G are connected by a unique normal clique-path γpq.

We define P as the family of normal clique-paths.
...and check it is as required.
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Normal clique path

Example (Normal clique path)
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Few other results

Theorem (Hoda)

A crystallogrphic group is Helly iff it is cubical.

Theorem (CCHO, Hirai, Haettel)

Lattices in many (extended) buildings are Helly.

Theorem (Haettel)

Let K be a local field (with characteristic different from 2 if K in non-
Archimedean), and let n ≥ 3. Then SL(n,K) does not act properly and
coboundedly on an injective metric space.
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Open questions

1 Find more examples of groups acting nicely on (coarse) Helly
spaces/injective spaces.
E.g.: What about Artin groups, lattices in buildings, ...?

2 Which CAT(0) properties hold for Helly groups/groups acting nicely
on Helly graphs/injective spaces?

3 When an amalgam of Helly groups is Helly?

4 Study the combinatorial dimension of groups/spaces!

5 Study the coarse geometry of Helly graphs and injective metric spaces.
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