Helly graphs and groups Young Geometric Group Theory X

Damian Osajda

Uniwersytet Wrocławski

July 30, 2021

제 ロン 제 御 에 제 활 시 제 끝 시 시 활 시 시

Injective hull vs Hellyfication

Theorem

Let Γ be a locally finite Helly graph.

- \bullet The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n \geq 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \leq 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- (2) A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull $E(\Gamma)$.

Corollary

Helly groups act geometrically on spaces with convex, reversible, consistent geodesic bicombing

 $=$ act geometrically on $CAT(0)$ -like spaces

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

β -stable intervals

Definition (Lang)

For $\beta > 1$, the graph Γ has β -stable intervals if for every triple of vertices w, v, v' with $v \sim v'$, we have $d_H(I(w, v), I(w, v')) \leq \beta$, where d_H denotes the Hausdorff distance.

Remark

This property is equivalent to the FFTP.

 QQ

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n > 1$.

 Ω

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n > 1$.

Theorem

Weakly modular graphs (in particular, Helly graphs) have 1-stable intervals.

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n > 1$.

Theorem

Weakly modular graphs (in particular, Helly graphs) have 1-stable intervals.

Example

For Γ being the 1-skeleton of a regular cubical grid in \mathbb{E}^{3} or a regular triangulation of \mathbb{E}^{2} we have $d_{H}(e(\Gamma),E(\Gamma))=\infty$, equivalently, $d_H(e(\Gamma), \text{Helly}(\Gamma)) = \infty$.

 QQ

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Coarse Helly

Definition

A metric space (X, d) has the *coarse Helly property* if there exists $\delta \geq 0$ such that for any family $\{B_{r_i}({x_i}):i\in I\}$ of pairwise intersecting closed balls of X , the intersection $\bigcap_{i\in I}B_{r_i+\delta}(x_i)$ is not empty.

Coarse Helly

Definition

A metric space (X, d) has the *coarse Helly property* if there exists $\delta \geq 0$ such that for any family $\{B_{r_i}({x_i}):i\in I\}$ of pairwise intersecting closed balls of X , the intersection $\bigcap_{i\in I}B_{r_i+\delta}(x_i)$ is not empty.

Theorem

A metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let f ∈ $E(X)$.

重

 299

イロト イ御ト イミトイ

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$.

4 ロ ト 4 伺 ト 4 ミ ト

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$.

4 0 8

 $\left\{ \begin{array}{ccc} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$.

K ロ ト K 伺 ト K ヨ ト K

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_\infty(f,e(z))=\sup_{x\in X}|f(x)-d(x,z)|.$ By the choice of z in $B_{f(x)+\delta}(x),$ $d(x, z) - f(x) \leq \delta$.

K ロ ト K 伺 ト K ヨ ト K

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_\infty(f,e(z))=\sup_{x\in X}|f(x)-d(x,z)|.$ By the choice of z in $B_{f(x)+\delta}(x),$ $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$.

 QQ

KO K K A P K K E K K

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

 (\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_\infty(f,e(z))=\sup_{x\in X}|f(x)-d(x,z)|.$ By the choice of z in $B_{f(x)+\delta}(x),$ $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$.

 QQ

KO K K A P K K E K K

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

 (\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_\infty(f,e(z))=\sup_{x\in X}|f(x)-d(x,z)|.$ By the choice of z in $B_{f(x)+\delta}(x),$ $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$. Let $\epsilon = \frac{1}{2}$ $\frac{1}{2}(f(x) - d(x, z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$.

 QQ

KO K K A P K K E K K

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

 (\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_\infty(f,e(z))=\sup_{x\in X}|f(x)-d(x,z)|.$ By the choice of z in $B_{f(x)+\delta}(x),$ $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$. Let $\epsilon = \frac{1}{2}$ $\frac{1}{2}(f(x) - d(x, z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$. By extremality of f, there exists $y \in X$ such that $f(x) + f(y) < d(x, y) + \epsilon$.

 QQ

KO K K H K H K K K

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_\infty(f,e(z))=\sup_{x\in X}|f(x)-d(x,z)|.$ By the choice of z in $B_{f(x)+\delta}(x),$ $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$. Let $\epsilon = \frac{1}{2}$ $\frac{1}{2}(f(x) - d(x, z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$. By extremality of f, there exists $y\in X$ such that $f(x)+f(y)< d(x,y)+\epsilon.$ Since $z\in B_{f(y)+\delta}(y),$ we have $f(y) \geq d(y, z) - \delta$, and consequently, we have $f(x)+f(y) > d(x, z)+\delta+\epsilon+d(y, z)-\delta = d(x, z)+d(y, z)+\epsilon \geq d(x, y)+\epsilon,$

 QQ

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

$$
Coarse \; Helly = "d_H(e(X), E(X)) < \infty"
$$

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_\infty(f,e(z))=\sup_{x\in X}|f(x)-d(x,z)|.$ By the choice of z in $B_{f(x)+\delta}(x),$ $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$. Let $\epsilon = \frac{1}{2}$ $\frac{1}{2}(f(x) - d(x, z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$. By extremality of f, there exists $y\in X$ such that $f(x)+f(y)< d(x,y)+\epsilon.$ Since $z\in B_{f(y)+\delta}(y),$ we have $f(y) \geq d(y, z) - \delta$, and consequently, we have $f(x)+f(y) > d(x, z)+\delta+\epsilon+d(y, z)-\delta = d(x, z)+d(y, z)+\epsilon \geq d(x, y)+\epsilon,$ a contradiction. L

 QQ

 $(1 + 4)$ $(1 + 4)$

Injective hull vs Hellyfication

Theorem

Let Γ be a locally finite Helly graph.

- \bullet The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n \geq 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \leq 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- (2) A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull $E(\Gamma)$.

Corollary

Helly groups act geometrically on spaces with convex, reversible, consistent geodesic bicombing $=$ act geometrically on $CAT(0)$ -like spaces

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Theorem (Lang, CCHGO)

(Gromov) hyperbolic groups are Helly.

 298

メロトメ 倒 トメ ミトメ ミト

Theorem (Lang, CCHGO)

(Gromov) hyperbolic groups are Helly.

Theorem (O.-Valiunas)

Finitely generated groups hyperbolic relative to (coarse) Helly groups are (coarse) Helly.

4 D F

Theorem (Lang, CCHGO)

(Gromov) hyperbolic groups are Helly.

Theorem (O.-Valiunas)

Finitely generated groups hyperbolic relative to (coarse) Helly groups are (coarse) Helly.

Theorem (O.-Valiunas)

'Strongly quasi-convex' subgroups of Helly groups are Helly.

∢ ロ ▶ - ∢ 母 ▶ - ∢ ヨ ▶ -∢ ヨ ▶

 Ω

Theorem (Lang, CCHGO)

(Gromov) hyperbolic groups are Helly.

Theorem (O.-Valiunas)

Finitely generated groups hyperbolic relative to (coarse) Helly groups are (coarse) Helly.

Theorem (O.-Valiunas)

'Strongly quasi-convex' subgroups of Helly groups are Helly.

Theorem (Haettel-Hoda-Petyt)

Hierarchically hyperbolic groups (in particular mapping class groups) act metrically properly and cocompactly on coarse Helly spaces. In particular, they are semihyperbolic.

 Ω

 $A \Box B$ A

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group.

 QQ

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

 Ω

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

Theorem (Świątkowski)

Let G be group acting geometrically on a graph Γ and let $\mathcal P$ be a path system in Γ satisfying the following conditions:

 (1) $\mathcal P$ is locally recognized;

 Ω

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

Theorem (Świątkowski)

Let G be group acting geometrically on a graph Γ and let $\mathcal P$ be a path system in Γ satisfying the following conditions:

- (1) $\mathcal P$ is locally recognized;
- (2) there exists $v_0 \in V(\Gamma)$ such that any two vertices from the orbit
	- $G \cdot v_0$ are connected by a path from P ;

 Ω

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

Theorem (Świątkowski)

Let G be group acting geometrically on a graph Γ and let $\mathcal P$ be a path system in Γ satisfying the following conditions:

- (1) P is locally recognized;
- (2) there exists $v_0 \in V(\Gamma)$ such that any two vertices from the orbit
	- $G \cdot v_0$ are connected by a path from P ;
- (3) $\mathcal P$ satisfies the 2-sided fellow traveler property.

 Ω

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

Theorem (Świątkowski)

Let G be group acting geometrically on a graph Γ and let $\mathcal P$ be a path system in Γ satisfying the following conditions:

- (1) $\mathcal P$ is locally recognized;
- (2) there exists $v_0 \in V(\Gamma)$ such that any two vertices from the orbit
	- $G \cdot v_0$ are connected by a path from P ;
- (3) P satisfies the 2-sided fellow traveler property.

Then G is biautomatic.

 Ω

イロト イ押ト イヨト イヨト

イロト イ押ト イヨト イヨト

Helly groups are biautomatic

Theorem

Helly groups are biautomatic.

4 0 8

 \sim \sim э \sim **ALC**

 \equiv

Helly groups are biautomatic

Theorem

Helly groups are biautomatic.

Proof: Let G act geometrically on Γ. We will construct a system P of paths of simplices in Γ, satisfying conditions required by Świątkowski's theorem.

Helly groups are biautomatic

Theorem

Helly groups are biautomatic.

Proof: Let G act geometrically on Γ. We will construct a system P of paths of simplices in Γ, satisfying conditions required by Świątkowski's theorem.

We define: $B_k^*(S) := \bigcap_{s \in S} B_k(s)$,

メロトメ 倒 トメ ミトメ ミト

We define:
$$
B_k^*(S) := \bigcap_{s \in S} B_k(s)
$$
,
\n $\bar{d}(\tau, \sigma) := \max\{d(t, s) : t \in \tau, s \in \sigma\}$,

 2990

イロト イ部 トイモ トイモト

We define:
$$
B_k^*(S) := \bigcap_{s \in S} B_k(s)
$$
,
\n $\bar{d}(\tau, \sigma) := \max\{d(t, s) : t \in \tau, s \in \sigma\}$,
\nfor $\bar{d}(\tau, \sigma) = k \geq 2$, we define:

 2990

イロト イ部 トイモ トイモト

We define:
$$
B_k^*(S) := \bigcap_{s \in S} B_k(s)
$$
,
\n $\bar{d}(\tau, \sigma) := \max\{d(t, s) : t \in \tau, s \in \sigma\}$,
\nfor $\bar{d}(\tau, \sigma) = k \ge 2$, we define:
\n $R_{\tau}(\sigma) := B_k^*(\tau) \cap B_1^*(\sigma)$ and
\n $f_{\tau}(\sigma) := B_{k-1}^*(\tau) \cap B_1^*(R_{\tau}(\sigma))$

τ

イロト イ部 トイモ トイモト

We define:
$$
B_k^*(S) := \bigcap_{s \in S} B_k(s)
$$
,
\n $\bar{d}(\tau, \sigma) := \max\{d(t, s) : t \in \tau, s \in \sigma\}$,
\nfor $\bar{d}(\tau, \sigma) = k \ge 2$, we define:
\n $R_\tau(\sigma) := B_k^*(\tau) \cap B_1^*(\sigma)$ and
\n $f_\tau(\sigma) := B_{k-1}^*(\tau) \cap B_1^*(R_\tau(\sigma))$
\n $f_\tau(\sigma)$ is called the *imprint* of σ with respect
\nto τ . It is a clique.

イロト イ部 トイモ トイモト

Definition (Normal clique path)

A sequence of cliques ($\sigma_0, \sigma_1, \ldots, \sigma_k$) of a Helly graph Γ is called a *normal* clique-path if the following local conditions hold:

Definition (Normal clique path)

A sequence of cliques ($\sigma_0, \sigma_1, \ldots, \sigma_k$) of a Helly graph Γ is called a *normal* clique-path if the following local conditions hold:

■ for any $0 \le i \le k-1$, σ_i and σ_{i+1} are disjoint and $\sigma_i \cup \sigma_{i+1}$ is a clique of Γ,

Definition (Normal clique path)

A sequence of cliques $(\sigma_0, \sigma_1, \ldots, \sigma_k)$ of a Helly graph Γ is called a *normal* clique-path if the following local conditions hold:

- **1** for any $0 \le i \le k-1$, σ_i and σ_{i+1} are disjoint and $\sigma_i \cup \sigma_{i+1}$ is a clique of Γ,
- **2** for any $1 \le i \le k-1$, σ_{i-1} and σ_{i+1} are at uniform-distance 2,

Definition (Normal clique path)

A sequence of cliques $(\sigma_0, \sigma_1, \ldots, \sigma_k)$ of a Helly graph Γ is called a *normal* clique-path if the following local conditions hold:

- **1** for any $0 \le i \le k-1$, σ_i and σ_{i+1} are disjoint and $\sigma_i \cup \sigma_{i+1}$ is a clique of Γ,
- **2** for any $1 \le i \le k-1$, σ_{i-1} and σ_{i+1} are at uniform-distance 2,

3 for any $1 \leq i \leq k-1$, $\sigma_i = f_{\sigma_{i-1}}(\sigma_{i+1})$.

 \leftarrow \Box

Theorem

For any pair τ , σ of cliques of a Helly graph Γ at uniform distance k, there exists a unique normal clique-path $\gamma_{\tau\sigma} = (\tau = \sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_k = \sigma)$, whose cliques are given by

$$
\sigma_i = f_\tau(\sigma_{i+1})
$$
 for each $i = k-1, \ldots, 2, 1$,

and any sequence of vertices $P=(s_0,s_1,\ldots,s_k)$ such that $s_i\in \sigma_i$ for $0 \le i \le k$ is a shortest path from s_0 to s_k . In particular, any two vertices p, q of G are connected by a unique normal clique-path γ_{pa} .

Theorem

For any pair τ , σ of cliques of a Helly graph Γ at uniform distance k, there exists a unique normal clique-path $\gamma_{\tau\sigma} = (\tau = \sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_k = \sigma)$, whose cliques are given by

$$
\sigma_i = f_\tau(\sigma_{i+1})
$$
 for each $i = k-1, \ldots, 2, 1,$

and any sequence of vertices $P=(s_0,s_1,\ldots,s_k)$ such that $s_i\in \sigma_i$ for $0 \le i \le k$ is a shortest path from s_0 to s_k . In particular, any two vertices p, q of G are connected by a unique normal clique-path γ_{pa} .

We define P as the family of normal clique-paths.

 QQQ

Theorem

For any pair τ , σ of cliques of a Helly graph Γ at uniform distance k, there exists a unique normal clique-path $\gamma_{\tau\sigma} = (\tau = \sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_k = \sigma)$, whose cliques are given by

$$
\sigma_i = f_\tau(\sigma_{i+1})
$$
 for each $i = k-1, \ldots, 2, 1,$

and any sequence of vertices $P=(s_0,s_1,\ldots,s_k)$ such that $s_i\in \sigma_i$ for $0 \le i \le k$ is a shortest path from s_0 to s_k . In particular, any two vertices p, q of G are connected by a unique normal clique-path γ_{pa} .

We define P as the family of normal clique-paths. ...and check it is as required.

 QQQ

Normal clique path

J.

イロト イ押ト イヨト イヨ

Few other results

Theorem (Hoda)

A crystallogrphic group is Helly iff it is cubical.

Theorem (CCHO, Hirai, Haettel)

Lattices in many (extended) buildings are Helly.

Theorem (Haettel)

Let K be a local field (with characteristic different from 2 if K in non-Archimedean), and let $n \geq 3$. Then $SL(n, \mathbb{K})$ does not act properly and coboundedly on an injective metric space.

 QQQ

Open questions

1 Find more examples of groups acting nicely on (coarse) Helly spaces/injective spaces.

E.g.: What about Artin groups, lattices in buildings, ...?

- ² Which CAT(0) properties hold for Helly groups/groups acting nicely on Helly graphs/injective spaces?
- ³ When an amalgam of Helly groups is Helly?
- ⁴ Study the combinatorial dimension of groups/spaces!
- **•** Study the coarse geometry of Helly graphs and injective metric spaces.