Helly graphs and groups Young Geometric Group Theory X

Damian Osajda

Uniwersytet Wrocławski

July 30, 2021

Injective hull vs Hellyfication

Theorem

Let Γ be a locally finite Helly graph.

- ① The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \geq 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \leq 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- ② A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull $E(\Gamma)$.

Corollary

Helly groups act geometrically on spaces with convex, reversible, consistent geodesic bicombing

= act geometrically on CAT(0) -like spaces

β -stable intervals

Definition (Lang)

For $\beta \geq 1$, the graph Γ has β -stable intervals if for every triple of vertices w, v, v' with $v \sim v'$, we have $d_H(I(w, v), I(w, v')) \leq \beta$, where d_H denotes the Hausdorff distance.

Remark

This property is equivalent to the FFTP.

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \geq 1$.

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \geq 1$.

Theorem

Weakly modular graphs (in particular, Helly graphs) have 1-stable intervals.

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \geq 1$.

Theorem

Weakly modular graphs (in particular, Helly graphs) have 1-stable intervals.

Example

For Γ being the 1-skeleton of a regular cubical grid in \mathbb{E}^3 or a regular triangulation of \mathbb{E}^2 we have $d_H(e(\Gamma), E(\Gamma)) = \infty$, equivalently, $d_H(e(\Gamma), \operatorname{Helly}(\Gamma)) = \infty$.

Coarse Helly

Definition

A metric space (X,d) has the *coarse Helly property* if there exists $\delta \geq 0$ such that for any family $\{B_{r_i}(x_i): i \in I\}$ of pairwise intersecting closed balls of X, the intersection $\bigcap_{i \in I} B_{r_i + \delta}(x_i)$ is not empty.

Coarse Helly

Definition

A metric space (X,d) has the *coarse Helly property* if there exists $\delta \geq 0$ such that for any family $\{B_{r_i}(x_i): i \in I\}$ of pairwise intersecting closed balls of X, the intersection $\bigcap_{i \in I} B_{r_i + \delta}(x_i)$ is not empty.

Theorem

A metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

 (\Rightarrow) Let $f \in E(X)$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \le f(x) + \delta$ for any $x \in X$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f,e(z)) \le \delta$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f,e(z)) \le \delta$. We have $d_{\infty}(f,e(z)) = \sup_{x \in X} |f(x) - d(x,z)|$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f,e(z)) \le \delta$. We have $d_{\infty}(f,e(z)) = \sup_{x \in X} |f(x) - d(x,z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x,z) - f(x) \le \delta$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f,e(z)) \le \delta$. We have $d_{\infty}(f,e(z)) = \sup_{x \in X} |f(x) - d(x,z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x,z) - f(x) \le \delta$. We show now that $f(x) - d(x,z) \le \delta$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \le f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f,e(z)) \le \delta$. We have $d_{\infty}(f,e(z)) = \sup_{x \in X} |f(x) - d(x,z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x,z) - f(x) \le \delta$. We show now that $f(x) - d(x,z) \le \delta$. Assume by contradiction that $f(x) - d(x,z) > \delta$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f,e(z)) \leq \delta$. We have $d_{\infty}(f,e(z)) = \sup_{x \in X} |f(x) - d(x,z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x,z) - f(x) \leq \delta$. We show now that $f(x) - d(x,z) \leq \delta$. Assume by contradiction that $f(x) - d(x,z) > \delta$. Let $\epsilon = \frac{1}{2}(f(x) - d(x,z) - \delta)$ and observe that $f(x) > d(x,z) + \delta + \epsilon$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f,e(z)) \leq \delta$. We have $d_{\infty}(f,e(z)) = \sup_{x \in X} |f(x) - d(x,z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x,z) - f(x) \leq \delta$. We show now that $f(x) - d(x,z) \leq \delta$. Assume by contradiction that $f(x) - d(x,z) > \delta$. Let $\epsilon = \frac{1}{2}(f(x) - d(x,z) - \delta)$ and observe that $f(x) > d(x,z) + \delta + \epsilon$. By extremality of f, there exists $y \in X$ such that $f(x) + f(y) < d(x,y) + \epsilon$.

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

 (\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x,z)-f(x) \leq \delta$. We show now that $f(x)-d(x,z) \leq \delta$. Assume by contradiction that $f(x) - d(x,z) > \delta$. Let $\epsilon = \frac{1}{2}(f(x) - d(x,z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$. By extremality of f, there exists $y \in X$ such that $f(x) + f(y) < d(x, y) + \epsilon$. Since $z \in B_{f(y)+\delta}(y)$, we have $f(y) \geq d(y,z) - \delta$, and consequently, we have $f(x)+f(y) > d(x,z)+\delta+\epsilon+d(y,z)-\delta = d(x,z)+d(y,z)+\epsilon \geq d(x,y)+\epsilon$

Theorem

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

 (\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x,z)-f(x) \leq \delta$. We show now that $f(x)-d(x,z) \leq \delta$. Assume by contradiction that $f(x) - d(x,z) > \delta$. Let $\epsilon = \frac{1}{2}(f(x) - d(x,z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$. By extremality of f, there exists $y \in X$ such that $f(x) + f(y) < d(x, y) + \epsilon$. Since $z \in B_{f(y)+\delta}(y)$, we have $f(y) \ge d(y,z) - \delta$, and consequently, we have $f(x)+f(y)>d(x,z)+\delta+\epsilon+d(y,z)-\delta=d(x,z)+d(y,z)+\epsilon\geq d(x,y)+\epsilon$ a contradiction.

Injective hull vs Hellyfication

Theorem

Let Γ be a locally finite Helly graph.

- ① The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \geq 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \leq 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- ⓐ A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull $E(\Gamma)$.

Corollary

Helly groups act geometrically on spaces with convex, reversible, consistent geodesic bicombing

= act geometrically on CAT(0) -like spaces

Theorem (Lang, CCHGO)

(Gromov) hyperbolic groups are Helly.

Theorem (Lang, CCHGO)

(Gromov) hyperbolic groups are Helly.

Theorem (O.-Valiunas)

Finitely generated groups hyperbolic relative to (coarse) Helly groups are (coarse) Helly.

Theorem (Lang, CCHGO)

(Gromov) hyperbolic groups are Helly.

Theorem (O.-Valiunas)

Finitely generated groups hyperbolic relative to (coarse) Helly groups are (coarse) Helly.

Theorem (O.-Valiunas)

'Strongly quasi-convex' subgroups of Helly groups are Helly.

Theorem (Lang, CCHGO)

(Gromov) hyperbolic groups are Helly.

Theorem (O.-Valiunas)

Finitely generated groups hyperbolic relative to (coarse) Helly groups are (coarse) Helly.

Theorem (O.-Valiunas)

'Strongly quasi-convex' subgroups of Helly groups are Helly.

Theorem (Haettel-Hoda-Petyt)

Hierarchically hyperbolic groups (in particular mapping class groups) act metrically properly and cocompactly on coarse Helly spaces. In particular, they are semihyperbolic.

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group.

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

Theorem (Świątkowski)

Let G be group acting geometrically on a graph Γ and let $\mathcal P$ be a path system in Γ satisfying the following conditions:

(1) \mathcal{P} is locally recognized;

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

Theorem (Świątkowski)

Let G be group acting geometrically on a graph Γ and let $\mathcal P$ be a path system in Γ satisfying the following conditions:

- (1) \mathcal{P} is locally recognized;
- (2) there exists $v_0 \in V(\Gamma)$ such that any two vertices from the orbit $G \cdot v_0$ are connected by a path from \mathcal{P} ;

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

Theorem (Świątkowski)

Let G be group acting geometrically on a graph Γ and let \mathcal{P} be a path system in Γ satisfying the following conditions:

- (1) \mathcal{P} is locally recognized;
- (2) there exists $v_0 \in V(\Gamma)$ such that any two vertices from the orbit $G \cdot v_0$ are connected by a path from \mathcal{P} ;
- (3) P satisfies the 2–sided fellow traveler property.

Biautomaticity is a strong NPC-like property implying numerous algorithmic, algebraic, and geometric features of a group. Roughly, it is about the possibility of choosing algorithmically a nice representative word for every element of the group.

Theorem (Świątkowski)

Let G be group acting geometrically on a graph Γ and let \mathcal{P} be a path system in Γ satisfying the following conditions:

- (1) \mathcal{P} is locally recognized;
- (2) there exists $v_0 \in V(\Gamma)$ such that any two vertices from the orbit $G \cdot v_0$ are connected by a path from \mathcal{P} ;
- (3) P satisfies the 2–sided fellow traveler property.

Then G is biautomatic.

Helly groups are biautomatic

Theorem

Helly groups are biautomatic.

Helly groups are biautomatic

Theorem

Helly groups are biautomatic.

Proof: Let G act geometrically on Γ . We will construct a system \mathcal{P} of paths of simplices in Γ , satisfying conditions required by Świątkowski's theorem.

Helly groups are biautomatic

Theorem

Helly groups are biautomatic.

Proof: Let G act geometrically on Γ . We will construct a system \mathcal{P} of paths of simplices in Γ , satisfying conditions required by Świątkowski's theorem.

Construction of \mathcal{P}

We define: $B_k^*(S) := \bigcap_{s \in S} B_k(s)$,

We define:
$$B_k^*(S) := \bigcap_{s \in S} B_k(s)$$
, $\bar{d}(\tau, \sigma) := \max\{d(t, s) : t \in \tau, s \in \sigma\}$,

```
We define: B_k^*(S) := \bigcap_{s \in S} B_k(s), \bar{d}(\tau, \sigma) := \max\{d(t, s) : t \in \tau, s \in \sigma\}, for \bar{d}(\tau, \sigma) = k \geq 2, we define:
```

We define:
$$B_k^*(S) := \bigcap_{s \in S} B_k(s)$$
, $\bar{d}(\tau, \sigma) := \max\{d(t, s) : t \in \tau, s \in \sigma\}$, for $\bar{d}(\tau, \sigma) = k \geq 2$, we define: $R_{\tau}(\sigma) := B_k^*(\tau) \cap B_1^*(\sigma)$ and $f_{\tau}(\sigma) := B_{k-1}^*(\tau) \cap B_1^*(R_{\tau}(\sigma))$

We define: $B_k^*(S) := \bigcap_{s \in S} B_k(s)$, $\bar{d}(\tau, \sigma) := \max\{d(t, s) : t \in \tau, s \in \sigma\}$, for $\bar{d}(\tau, \sigma) = k \geq 2$, we define: $R_{\tau}(\sigma) := B_k^*(\tau) \cap B_1^*(\sigma)$ and $f_{\tau}(\sigma) := B_{k-1}^*(\tau) \cap B_1^*(R_{\tau}(\sigma))$ $f_{\tau}(\sigma)$ is called the *imprint* of σ with respect to τ . It is a clique.

Definition (Normal clique path)

A sequence of cliques $(\sigma_0, \sigma_1, \dots, \sigma_k)$ of a Helly graph Γ is called a *normal clique-path* if the following local conditions hold:

Definition (Normal clique path)

A sequence of cliques $(\sigma_0, \sigma_1, \dots, \sigma_k)$ of a Helly graph Γ is called a *normal clique-path* if the following local conditions hold:

• for any $0 \le i \le k-1$, σ_i and σ_{i+1} are disjoint and $\sigma_i \cup \sigma_{i+1}$ is a clique of Γ ,

Definition (Normal clique path)

A sequence of cliques $(\sigma_0, \sigma_1, \dots, \sigma_k)$ of a Helly graph Γ is called a *normal clique-path* if the following local conditions hold:

- for any $0 \le i \le k-1$, σ_i and σ_{i+1} are disjoint and $\sigma_i \cup \sigma_{i+1}$ is a clique of Γ ,
- ② for any $1 \le i \le k-1$, σ_{i-1} and σ_{i+1} are at uniform-distance 2,

Definition (Normal clique path)

A sequence of cliques $(\sigma_0, \sigma_1, \dots, \sigma_k)$ of a Helly graph Γ is called a *normal clique-path* if the following local conditions hold:

- for any $0 \le i \le k-1$, σ_i and σ_{i+1} are disjoint and $\sigma_i \cup \sigma_{i+1}$ is a clique of Γ ,
- ② for any $1 \le i \le k-1$, σ_{i-1} and σ_{i+1} are at uniform-distance 2,

Theorem

For any pair τ, σ of cliques of a Helly graph Γ at uniform distance k, there exists a unique normal clique-path $\gamma_{\tau\sigma} = (\tau = \sigma_0, \sigma_1, \sigma_2, \dots, \sigma_k = \sigma)$, whose cliques are given by

$$\sigma_i = f_{\tau}(\sigma_{i+1})$$
 for each $i = k-1, \ldots, 2, 1,$

and any sequence of vertices $P = (s_0, s_1, \ldots, s_k)$ such that $s_i \in \sigma_i$ for $0 \le i \le k$ is a shortest path from s_0 to s_k . In particular, any two vertices p, q of G are connected by a unique normal clique-path γ_{pq} .

Theorem

For any pair τ, σ of cliques of a Helly graph Γ at uniform distance k, there exists a unique normal clique-path $\gamma_{\tau\sigma}=(\tau=\sigma_0,\sigma_1,\sigma_2,\ldots,\sigma_k=\sigma)$, whose cliques are given by

$$\sigma_i = f_{\tau}(\sigma_{i+1})$$
 for each $i = k - 1, \dots, 2, 1,$

and any sequence of vertices $P = (s_0, s_1, \ldots, s_k)$ such that $s_i \in \sigma_i$ for $0 \le i \le k$ is a shortest path from s_0 to s_k . In particular, any two vertices p, q of G are connected by a unique normal clique-path γ_{pq} .

We define \mathcal{P} as the family of normal clique-paths.

Theorem

For any pair τ, σ of cliques of a Helly graph Γ at uniform distance k, there exists a unique normal clique-path $\gamma_{\tau\sigma} = (\tau = \sigma_0, \sigma_1, \sigma_2, \dots, \sigma_k = \sigma)$, whose cliques are given by

$$\sigma_i = f_{\tau}(\sigma_{i+1})$$
 for each $i = k-1, \ldots, 2, 1,$

and any sequence of vertices $P = (s_0, s_1, \ldots, s_k)$ such that $s_i \in \sigma_i$ for $0 \le i \le k$ is a shortest path from s_0 to s_k . In particular, any two vertices p, q of G are connected by a unique normal clique-path γ_{pq} .

We define \mathcal{P} as the family of normal clique-paths. ...and check it is as required.

Normal clique path

Few other results

Theorem (Hoda)

A crystallogrphic group is Helly iff it is cubical.

Theorem (CCHO, Hirai, Haettel)

Lattices in many (extended) buildings are Helly.

Theorem (Haettel)

Let $\mathbb K$ be a local field (with characteristic different from 2 if $\mathbb K$ in non-Archimedean), and let $n\geq 3$. Then $SL(n,\mathbb K)$ does not act properly and coboundedly on an injective metric space.

Open questions

- Find more examples of groups acting nicely on (coarse) Helly spaces/injective spaces.
 - E.g.: What about Artin groups, lattices in buildings, ...?
- Which CAT(0) properties hold for Helly groups/groups acting nicely on Helly graphs/injective spaces?
- When an amalgam of Helly groups is Helly?
- Study the combinatorial dimension of groups/spaces!
- Study the coarse geometry of Helly graphs and injective metric spaces.