

Equivariant Cayley Complex Embeddings

George Kontogeorgiou

2021

Two families, both alike in behaviour, In fair S³, where we lay our scene...

Dramatis Personae

Finite groups which admit a topological, faithful action over \mathbb{S}^3 .

Finite groups which have a Cayley complex H which embeds equivariantly in \mathbb{S}^3 .

Question: How do these families relate to each other?

Interlude

The word "equivariant" describes an embedding f of a Cayley complex H in a manifold M for which this diagram commutes:

$$\begin{array}{cccc} H & \stackrel{f}{\longrightarrow} & M \\ \\ \gamma_g \\ \downarrow & & \phi_g \\ \\ H & \stackrel{f}{\longrightarrow} & M \end{array}$$

Forward Implication

Theorem

Every finite group which admits a faithful topological action has a Cayley complex which embeds equivariantly in \mathbb{S}^3 .

How so?

- ► Let *G* be such a group.
- ▶ By Pardon's Theorem and the Spherical Space Form Theorem, G has a faithful isometric action over S³.
- We construct an equivariant embedding, with respect to appropriate actions of G, of a simply connected 2-complex.
- We prove and use a version of Babai's Theorem for 2-complexes to produce a Cayley complex of G equivariantly embedded in S³.

Backward Implication

Theorem

Every finite group which has a Cayley complex which embeds in \mathbb{S}^3 admits a faithful topological action in \mathbb{S}^3 for which this embedding is equivariant.

How so?

Theorem (Georgakopoulos, Kim)

Every Whitney 2-complex has a unique embedding in \mathbb{S}^3 up to homeomorphism.

- Let $f : H \to \mathbb{S}^3$ be an embedding of a Cayley complex of G.
- ▶ We construct an embedding $f' : H' \to S^3$ and an action $\gamma' : G \times H' \to H'$ such that $H \subseteq H'$, $f'|_H = f$, $\gamma'|_H = \gamma$, and H' is Whitney.
- ► We apply the Georgakopoulos-Kim Theorem.
- ► We are done!

Question: Does the forward implication hold for \mathbb{R}^3 ?

Answer: Still open.

QuestionL Does the backward implication hold for \mathbb{R}^3 ?

Answer: No! $\mathbb{Z}_3 \times \mathbb{Z}_3$ offers a counter-example.

Question: How do these results extend to infinite groups?

