G graph of bounded degree.

G graph of bounded degree.

Theorem (Dranishnikov 2002)

If asdim $G < \infty$, then $G \stackrel{coarse}{\hookrightarrow} T_0 \times T_1 \times \cdots \times T_m$.

G graph of bounded degree.

Theorem (Dranishnikov 2002)

If asdim $G < \infty$, then $G \stackrel{coarse}{\hookrightarrow} T_0 \times T_1 \times \cdots \times T_m$.

Question: can we take the T_i 's of **bounded degree**?

G graph of bounded degree.

Theorem (Dranishnikov 2002)

If asdim $G < \infty$, then $G \stackrel{coarse}{\hookrightarrow} T_0 \times T_1 \times \cdots \times T_m$.

Question: can we take the T_i 's of **bounded degree**? What tool?

G graph of bounded degree.

Theorem (Dranishnikov 2002)

If asdim $G < \infty$, then $G \stackrel{coarse}{\hookrightarrow} T_0 \times T_1 \times \cdots \times T_m$.

Question: can we take the T_i 's of **bounded degree**? What tool? **Separation profile** [Benjamini, Schramm, Timár].

G graph of bounded degree.

Theorem (Dranishnikov 2002)

If asdim $G < \infty$, then $G \stackrel{coarse}{\hookrightarrow} T_0 \times T_1 \times \cdots \times T_m$.

Question: can we take the T_i 's of **bounded degree**? What tool? **Separation profile** [Benjamini, Schramm, Timár].

Proposition (Benjamini, Schramm, Timár, 2011)

If $G \stackrel{coarse}{\hookrightarrow} H$, then $\operatorname{sep}_G \preceq \operatorname{sep}_H$.

G graph of bounded degree.

Theorem (Dranishnikov 2002)

 $\textit{If asdim } G < \infty, \textit{ then } G \stackrel{\textit{coarse}}{\hookrightarrow} T_0 \times T_1 \times \cdots \times T_m.$

Question: can we take the T_i 's of **bounded degree**? What tool? **Separation profile** [Benjamini, Schramm, Timár].

Proposition (Benjamini, Schramm, Timár, 2011)

If $G \stackrel{\text{coarse}}{\hookrightarrow} H$, then $\sup_G \preceq \sup_H$. $sep_{\tilde{T}_0 \times \tilde{T}_1 \times \cdots \times \tilde{T}_m} \preceq \frac{n}{\log n}$ (trees of bounded degree)

G graph of bounded degree.

Theorem (Dranishnikov 2002)

 $\textit{If asdim } G < \infty, \textit{ then } G \stackrel{\textit{coarse}}{\hookrightarrow} T_0 \times T_1 \times \cdots \times T_m.$

Question: can we take the T_i 's of **bounded degree**? What tool? **Separation profile** [Benjamini, Schramm, Timár].

Proposition (Benjamini, Schramm, Timár, 2011)

If $G \stackrel{\text{coarse}}{\hookrightarrow} H$, then $\sup_G \preceq \sup_H$. $sep_{\tilde{T}_0 \times \tilde{T}_1 \times \cdots \times \tilde{T}_m} \preceq \frac{n}{\log n}$ (trees of bounded degree)

Proposition (Hume 2017)

 $sep_G(n)/n \not\rightarrow 0$ iff G contains a family of expanders E_n as subgraphs.

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary of the construction:

- Two finite groups A and B,

Summary of the construction:

- Two finite groups A and B,
- A sequence of finite groups $(\Gamma_s)_{s>0}$, such that $\Gamma_s = \langle A_s \cup B_s \rangle$,

Summary of the construction:

- Two finite groups A and B,
- A sequence of finite groups $(\Gamma_s)_{s\geq 0}$, such that $\Gamma_s = \langle A_s \cup B_s \rangle$, and $(\operatorname{Cay}(\Gamma_s, A_s \cup B_s))_{s>0}$ is an expander.

Summary of the construction:

- Two finite groups A and B,
- A sequence of finite groups $(\Gamma_s)_{s\geq 0}$, such that $\Gamma_s = \langle A_s \cup B_s \rangle$, and $(\operatorname{Cay}(\Gamma_s, A_s \cup B_s))_{s\geq 0}$ is an expander.
- A sequence of homomorphisms $\pi_s \colon A * B * \mathbb{Z} \to \bigoplus_{\mathbb{Z}} \Gamma_s \rtimes \mathbb{Z}$.

Summary of the construction:

- Two finite groups A and B,
- A sequence of finite groups $(\Gamma_s)_{s\geq 0}$, such that $\Gamma_s = \langle A_s \cup B_s \rangle$, and $(\operatorname{Cay}(\Gamma_s, A_s \cup B_s))_{s>0}$ is an expander.
- A sequence of homomorphisms $\pi_s \colon A * B * \mathbb{Z} \to \bigoplus_{\mathbb{Z}} \Gamma_s \rtimes \mathbb{Z}$.

- Finally we set

$$\Delta = A * B * \mathbb{Z} / \cap_{s \ge 0} \ker \pi_s.$$

Summary of the construction:

- Two finite groups A and B,
- A sequence of finite groups $(\Gamma_s)_{s\geq 0}$, such that $\Gamma_s = \langle A_s \cup B_s \rangle$, and $(\operatorname{Cay}(\Gamma_s, A_s \cup B_s))_{s\geq 0}$ is an expander.
- A sequence of homomorphisms $\pi_s \colon A * B * \mathbb{Z} \to \bigoplus_{\mathbb{Z}} \Gamma_s \rtimes \mathbb{Z}$.

- Finally we set

$$\Delta = A * B * \mathbb{Z} / \cap_{s \ge 0} \ker \pi_s.$$

For a suitable choice of $(\Gamma_s)_{s\geq 0}$ and $(k_s)_{s\geq 0}$, we get

Summary of the construction:

- Two finite groups A and B,
- A sequence of finite groups $(\Gamma_s)_{s\geq 0}$, such that $\Gamma_s = \langle A_s \cup B_s \rangle$, and $(\operatorname{Cay}(\Gamma_s, A_s \cup B_s))_{s>0}$ is an expander.
- A sequence of homomorphisms $\pi_s \colon A * B * \mathbb{Z} \to \bigoplus_{\mathbb{Z}} \Gamma_s \rtimes \mathbb{Z}$.

- Finally we set

$$\Delta = A * B * \mathbb{Z} / \cap_{s \ge 0} \ker \pi_s.$$

For a suitable choice of $(\Gamma_s)_{s\geq 0}$ and $(k_s)_{s\geq 0}$, we get

$$\operatorname{sep}_{\Delta} >> \frac{n}{\log n}$$

(along a subsequence).

Thank you !

æ

æ