Graphical splittings of Artin kernels

Lorenzo Ruffoni

Tufts University

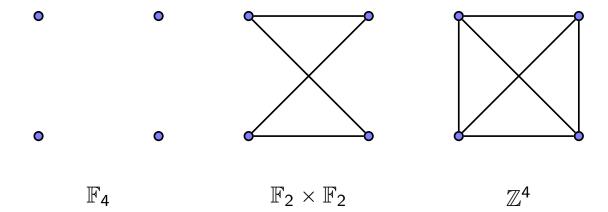
(joint work with M. Barquinero, K. Ye)

YGGT X

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a finite simplicial graph.

The **RAAG** (right-angled Artin group) A_{Γ} on Γ is this group:

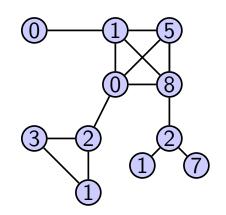
$$A_{\Gamma} = \langle x_i \in V(\Gamma) \mid x_i x_j = x_j x_i \text{ iff } [x_i, x_j] \in E(\Gamma) \rangle$$



A map $f: A_{\Gamma} \to \mathbb{Z}$ is determined by its values on vertices.

It determines the **Artin kernel** ker(f)

$$1 \to \ker(f) \to A_{\Gamma} \to \mathbb{Z} \to 1$$



Problem: understand ker(f) (e.g. splittings, rank,...).

Examples:

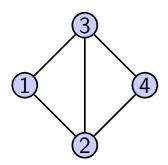
- f(v) = 1, $\forall v \in V(\Gamma)$ (Bestvina, Brady)
- 2 if Γ is a tree, then $A_{\Gamma} = \pi_1(M)$ for some compact 3-manifold M (Droms).

Let Γ be a connected **chordal** graph (e.g. a tree).

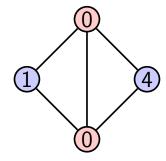
Theorem (Barquinero, R., Ye, 2020)

For any $f: A_{\Gamma} \to \mathbb{Z}$, exactly (and explicitly) one holds:

- \bullet ker(f) is a finite graph of f.g. free abelian groups;
- **2** $\ker(f)$ surjects to \mathbb{F}_{∞} .



case 1, $\mathbb{Z}^2 *_{\mathbb{Z}} \mathbb{Z}^2$



case 2

Application: bounded divergence

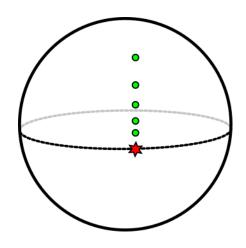
Let Γ be a connected **block** graph with cut points (e.g. a tree).

Corollary/takeaway

The rank function is not proper on the BNS-invariant of A_{Γ} .

In the same A_{Γ} , we construct a sequence of Artin kernels $\ker(f_n)$ such that:

- $\ker(f_n)$ all isomorphic (with finite rank);
- $\lim_{n\to\infty} \ker(f_n)$ is not f.g. (surjects to \mathbb{F}_{∞}).



Thank you!