A version of omnipotence for virtually special cubulated groups

Sam Shepherd

Definition

A group *G* commands a set of elements $\{g_1, ..., g_n\} \subset G$ if there exists an integer N > 0 such that for any integers $r_1, ..., r_n > 0$ there exists a homomorphism to a finite group $G \to \overline{G}, g \mapsto \overline{g}$ such that the order of \overline{g}_i is Nr_i .

Definition

A group *G* commands a set of elements $\{g_1, ..., g_n\} \subset G$ if there exists an integer N > 0 such that for any integers $r_1, ..., r_n > 0$ there exists a homomorphism to a finite group $G \to \overline{G}, g \mapsto \overline{g}$ such that the order of \overline{g}_i is Nr_i .

Definition

A group is **omnipotent** if it commands any independent set of elements $\{g_1, ..., g_n\}$ (i.e. the g_i have infinite order and no non-zero power of g_i is conjugate to a non-zero power of g_j for $i \neq j$).

Definition

A group *G* commands a set of elements $\{g_1, ..., g_n\} \subset G$ if there exists an integer N > 0 such that for any integers $r_1, ..., r_n > 0$ there exists a homomorphism to a finite group $G \to \overline{G}, g \mapsto \overline{g}$ such that the order of \overline{g}_i is Nr_i .

Definition

A group is **omnipotent** if it commands any independent set of elements $\{g_1, ..., g_n\}$ (i.e. the g_i have infinite order and no non-zero power of g_i is conjugate to a non-zero power of g_j for $i \neq j$).

Examples of omnipotent groups:

Definition

A group *G* commands a set of elements $\{g_1, ..., g_n\} \subset G$ if there exists an integer N > 0 such that for any integers $r_1, ..., r_n > 0$ there exists a homomorphism to a finite group $G \to \overline{G}, g \mapsto \overline{g}$ such that the order of \overline{g}_i is Nr_i .

Definition

A group is **omnipotent** if it commands any independent set of elements $\{g_1, ..., g_n\}$ (i.e. the g_i have infinite order and no non-zero power of g_i is conjugate to a non-zero power of g_j for $i \neq j$).

Examples of omnipotent groups:

• free groups (Wise '00)

Definition

A group *G* commands a set of elements $\{g_1, ..., g_n\} \subset G$ if there exists an integer N > 0 such that for any integers $r_1, ..., r_n > 0$ there exists a homomorphism to a finite group $G \to \overline{G}, g \mapsto \overline{g}$ such that the order of \overline{g}_i is Nr_i .

Definition

A group is **omnipotent** if it commands any independent set of elements $\{g_1, ..., g_n\}$ (i.e. the g_i have infinite order and no non-zero power of g_i is conjugate to a non-zero power of g_j for $i \neq j$).

Examples of omnipotent groups:

- free groups (Wise '00)
- hyperbolic surface groups (Bajpai '07)

Definition

A group *G* commands a set of elements $\{g_1, ..., g_n\} \subset G$ if there exists an integer N > 0 such that for any integers $r_1, ..., r_n > 0$ there exists a homomorphism to a finite group $G \to \overline{G}, g \mapsto \overline{g}$ such that the order of \overline{g}_i is Nr_i .

Definition

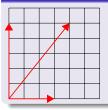
A group is **omnipotent** if it commands any independent set of elements $\{g_1, ..., g_n\}$ (i.e. the g_i have infinite order and no non-zero power of g_i is conjugate to a non-zero power of g_j for $i \neq j$).

Examples of omnipotent groups:

- free groups (Wise '00)
- hyperbolic surface groups (Bajpai '07)
- virtually special hyperbolic groups (Wise '12)

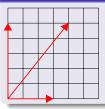
My Theorem

A non-omnipotent group: \mathbb{Z}^2



My Theorem

A non-omnipotent group: \mathbb{Z}^2

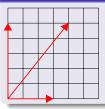


Definition

An element g of a cubulated group $G \cap X$ is **convex** if it stabilises a convex subcomplex $Y \subset X$ with $Y/\langle g \rangle$ compact.

My Theorem

A non-omnipotent group: \mathbb{Z}^2



Definition

An element g of a cubulated group $G \curvearrowright X$ is **convex** if it stabilises a convex subcomplex $Y \subset X$ with $Y/\langle g \rangle$ compact.

Theorem

Every virtually special cubulated group $G \curvearrowright X$ commands every independent set of convex elements.