Groups of type *FP*₂: how many of them are there?

Ignat Soroko

Florida State University

soroko@math.fsu.edu

yGGT X, Newcastle University, 7/26/21

A group G is of type ...

$$1 \longrightarrow N \longrightarrow F \longrightarrow G \longrightarrow 1$$

*F*₂: **finitely presented**: if *N* is finitely generated as a normal subgroup (homotopical notion)

Fact: $F_2 \subset FP_2$ Bestvina-Brady '97: $F_2 \neq FP_2$

*FP*₂: almost fin. presented: if N/N' is finitely generated as a $\mathbb{Z}G$ -module (homological notion) A group G is of type ...

$$1 \longrightarrow N \longrightarrow F \longrightarrow G \longrightarrow 1$$

*F*₂: finitely presented:if *N* is finitely generated as a normal subgroup(homotopical notion)

Fact: $F_2 \subset FP_2$ Bestvina-Brady '97: $F_2 \neq FP_2$

*FP*₂: almost fin. presented: if N/N' is finitely generated as a $\mathbb{Z}G$ -module (homological notion)

Q: How many groups of types F_2 , FP_2 are there?

 F_2 :

 \aleph_0 (countably many)

 FP_2 :

 2^{\aleph_0} up to isomorphism (Leary '18) 2^{\aleph_0} up to quasi-isometry (R.Kropholler–Leary–S. '20) F_2 :

(usual) **Dehn function** δ_G :

 δ_G computable \Rightarrow word problem is solvable for G

FP_2 :

homological Dehn function *FA*_{*G*}:

∃ groups with $FA_G(n) = n^4$ and unsolvable word problem (Brady–R.Kropholler–S. '20) F_2 :

(usual) **Dehn function** δ_G :

 δ_G computable \Rightarrow word problem is solvable for G

FP_2 :

homological Dehn function *FA*_{*G*}:

∃ groups with $FA_G(n) = n^4$ and unsolvable word problem (Brady–R.Kropholler–S. '20)

Theorem (N.Brady-R.Kropholler-S.'20)

For a countable dense subset of $\alpha \in [4, \infty)$ (containing all even integers ≥ 4) there exist uncountably many quasi-isometry classes of groups of type FP₂ with homological Dehn function n^{α} . F_2 :

(usual) **Dehn function** δ_G :

 δ_G computable \Rightarrow word problem is solvable for G FP_2 :

homological Dehn function *FA*_{*G*}:

∃ groups with $FA_G(n) = n^4$ and unsolvable word problem (Brady–R.Kropholler–S. '20)

Theorem (N.Brady-R.Kropholler-S.'20)

For a countable dense subset of $\alpha \in [4, \infty)$ (containing all even integers ≥ 4) there exist uncountably many quasi-isometry classes of groups of type FP₂ with homological Dehn function n^{α} .

Open question: Characterize the homological isoperimetric spectrum

 $HIP = \{ \alpha \mid n^{\alpha} \text{ is homological Dehn function of a group of type } FP_2 \}.$

Do we have equality $HIP = \{1\} \cup [2,\infty)$?