A class of increasing homeomorphism groups naturally isomorphic to diagram groups

Liam Stott

University of St Andrews

June 2021

Geometrically Fast Sets

It can be shown that supt(f) is a disjoint union of open intervals. We refer to each of these intervals as the **orbitals** of f and refer to $b \in \text{Homeo}_+(I)$ as a **bump** if it has precisely one orbital.

It can be shown that supt(f) is a disjoint union of open intervals. We refer to each of these intervals as the **orbitals** of f and refer to $b \in \text{Homeo}_+(I)$ as a **bump** if it has precisely one orbital.

If $B \subseteq Homeo_+(I)$ is a finite collection of bumps then a marking of B is a collection of points $t_b \in supt(b)$ for each $b \in B$, each called the marker of b.

It can be shown that supt(f) is a disjoint union of open intervals. We refer to each of these intervals as the **orbitals** of f and refer to $b \in \text{Homeo}_+(I)$ as a **bump** if it has precisely one orbital.

If $B \subseteq Homeo_+(I)$ is a finite collection of bumps then a marking of B is a collection of points $t_b \in supt(b)$ for each $b \in B$, each called the marker of b.

With respect to a marker t for $b \in B$ with orbital (x, y) we define the **source** and the **destination** of b to be the intervals (x, t) and [tb, y) respectively, collectively referred to as **feet**.

It can be shown that supt(f) is a disjoint union of open intervals. We refer to each of these intervals as the **orbitals** of f and refer to $b \in \text{Homeo}_+(I)$ as a **bump** if it has precisely one orbital.

If $B \subseteq Homeo_+(I)$ is a finite collection of bumps then a marking of B is a collection of points $t_b \in supt(b)$ for each $b \in B$, each called the marker of b.

With respect to a marker t for $b \in B$ with orbital (x, y) we define the **source** and the **destination** of b to be the intervals (x, t) and [tb, y) respectively, collectively referred to as **feet**.

We say B is **geometrically fast** if there exists a marking for B such that its feet are pairwise disjoint. (C. Bleak et. al [1])

Notice that, given a geometrically fast set, we can draw them on a **bump** diagram obtained by rotating the graph of the set to make the line y = x horizontal (closely related to dynamical diagrams defined in [1]).

Notice that, given a geometrically fast set, we can draw them on a **bump** diagram obtained by rotating the graph of the set to make the line y = x horizontal (closely related to dynamical diagrams defined in [1]).

Notice that, given a geometrically fast set, we can draw them on a **bump** diagram obtained by rotating the graph of the set to make the line y = x horizontal (closely related to dynamical diagrams defined in [1]).

Notice that, given a geometrically fast set, we can draw them on a **bump** diagram obtained by rotating the graph of the set to make the line y = x horizontal (closely related to dynamical diagrams defined in [1]).

Notice that, given a geometrically fast set, we can draw them on a **bump** diagram obtained by rotating the graph of the set to make the line y = x horizontal (closely related to dynamical diagrams defined in [1]).

Notice that, given a geometrically fast set, we can draw them on a **bump** diagram obtained by rotating the graph of the set to make the line y = x horizontal (closely related to dynamical diagrams defined in [1]).

Notice that, given a geometrically fast set, we can draw them on a **bump** diagram obtained by rotating the graph of the set to make the line y = x horizontal (closely related to dynamical diagrams defined in [1]).

Consider a geometrically fast set of bumps $\{b_1, b_2\}$ such that $supt(b_1) \cap supt(b_2) \neq \emptyset$ and $supt(b_i) \not\subseteq supt(b_j)$ for $i \neq j$.

Using this partition, we have that

$$(a)b_1 = abcd$$
 $(c)b_2 = cdef$
 $(bcde)b_1 = e$ $(defg)b_2 = g$

We can now define a semigroup presentation corresponding to $\{b_1, b_2\}$

We can now define a semigroup presentation corresponding to $\{b_1, b_2\}$

$$\mathcal{P}_{\{b_1,b_2\}} = \langle a,b,c,d,e,f,g \mid a = abcd, bcde = e,c = cdef, defg = g \rangle$$

We can now define a semigroup presentation corresponding to $\{b_1, b_2\}$

$$\mathcal{P}_{\{b_1,b_2\}} = \langle a,b,c,d,e,f,g \mid a = abcd, bcde = e,c = cdef, defg = g \rangle$$

and represent the bumps b_1, b_2 by the diagrams β_1, β_2 over $\mathcal{P}_{\{b_1, b_2\}}$ below.

We can now define a semigroup presentation corresponding to $\{b_1, b_2\}$

$$\mathcal{P}_{\{b_1,b_2\}} = \langle \mathsf{a},\mathsf{b},\mathsf{c},\mathsf{d},\mathsf{e},\mathsf{f},\mathsf{g} \mid \mathsf{a} = \mathsf{abcd},\mathsf{bcde} = \mathsf{e},\mathsf{c} = \mathsf{cdef},\mathsf{defg} = \mathsf{g}
angle$$

and represent the bumps b_1, b_2 by the diagrams β_1, β_2 over $\mathcal{P}_{\{b_1, b_2\}}$ below.

We can now define a semigroup presentation corresponding to $\{b_1, b_2\}$

$$\mathcal{P}_{\{b_1,b_2\}} = \langle a,b,c,d,e,f,g \mid a = abcd, bcde = e,c = cdef, defg = g
angle$$

and represent the bumps b_1, b_2 by the diagrams β_1, β_2 over $\mathcal{P}_{\{b_1, b_2\}}$ below.

We can see that $\langle \beta_1, \beta_2 \rangle$ is a subgroup of the diagram group $D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$ and the assignment $b_1 \mapsto \beta_1, b_2 \mapsto \beta_2$ extends to a map $\delta : \langle b_1, b_2 \rangle \to D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$.

We can see that $\langle \beta_1, \beta_2 \rangle$ is a subgroup of the diagram group $D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$ and the assignment $b_1 \mapsto \beta_1, b_2 \mapsto \beta_2$ extends to a map $\delta : \langle b_1, b_2 \rangle \to D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$.

It can be shown that δ is an isomorphism. We thus call $D(\mathcal{P}_{\{b_1,b_2\}}, abcdefg)$ a bumpy diagram group.

We can see that $\langle \beta_1, \beta_2 \rangle$ is a subgroup of the diagram group $D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$ and the assignment $b_1 \mapsto \beta_1, b_2 \mapsto \beta_2$ extends to a map $\delta : \langle b_1, b_2 \rangle \to D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$.

It can be shown that δ is an isomorphism. We thus call $D(\mathcal{P}_{\{b_1,b_2\}}, abcdefg)$ a bumpy diagram group.

We can similarly obtain a diagram group given any finite geometrically fast set of bumps $B = \{b_1, \ldots, b_n\}$. By doing this we obtain a class of diagram groups.

We can see that $\langle \beta_1, \beta_2 \rangle$ is a subgroup of the diagram group $D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$ and the assignment $b_1 \mapsto \beta_1, b_2 \mapsto \beta_2$ extends to a map $\delta : \langle b_1, b_2 \rangle \to D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$.

It can be shown that δ is an isomorphism. We thus call $D(\mathcal{P}_{\{b_1,b_2\}}, abcdefg)$ a bumpy diagram group.

We can similarly obtain a diagram group given any finite geometrically fast set of bumps $B = \{b_1, \ldots, b_n\}$. By doing this we obtain a class of diagram groups.

In general, the bumpy diagram group $D(\mathcal{P}_B, a_1 \dots a_{4n-1})$ isomorphic to $\langle B \rangle$ is over the presentation

We can see that $\langle \beta_1, \beta_2 \rangle$ is a subgroup of the diagram group $D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$ and the assignment $b_1 \mapsto \beta_1, b_2 \mapsto \beta_2$ extends to a map $\delta : \langle b_1, b_2 \rangle \to D(\mathcal{P}_{\{b_1, b_2\}}, abcdefg)$.

It can be shown that δ is an isomorphism. We thus call $D(\mathcal{P}_{\{b_1,b_2\}}, abcdefg)$ a bumpy diagram group.

We can similarly obtain a diagram group given any finite geometrically fast set of bumps $B = \{b_1, \ldots, b_n\}$. By doing this we obtain a class of diagram groups.

In general, the bumpy diagram group $D(\mathcal{P}_B, a_1 \dots a_{4n-1})$ isomorphic to $\langle B \rangle$ is over the presentation

$$\begin{split} \mathcal{P}_B = \langle a_1, \dots, a_{4n-1} \mid (a_k, a_k a_{k+1} \dots a_{l-1}), \\ & (a_{k+1} \dots a_{l-1} a_l, a_l) \text{ for each } b_i \in B \rangle \end{split}$$

5/6

where a_k and a_l is the source and destination of each b_i respectively. Liam Stott (University of St Andrews) A class of increasing homeomorphism grou June 2021

- Bleak et al., Groups of fast homeomorphisms of the interval and the ping-pong argument, *Journal of Combinatorial Algebra*, **3** 1-40 (2019).
- Guba and Sapir, Diagram groups, *Memoirs of the Amer. Math. Soc.* **130**, 1-117 (1997).
- Guba and Sapir, Diagram groups are totally orderable, *J. Pure Appl. Algebra* **205**, 48-73 (2006).