
Session 1a: Thermal, Mechanical and Thermochemical Energy Storage

Design and Analysis of a CaO/Ca(OH)2 Thermochemical Energy 

Storage & Discharge Plant with Concentrated Solar Power

Shiladitya Ghosh*, 3rd Year PhD student (Fennell Group)

Prof. Paul S. Fennell, Professor of Clean Energy

Imperial College London

LT G.41

3rd September 2019



Concentrated Solar Power (CSP) and Energy Storage

Fig. 1: Illustration of a heliostat field design for concentrated solar 

power without heat storage [1]
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[1] https://energy.gov

[2] L. Andre, S. Abanades and G. Flamant, Renewable and Sustainable Energy Reviews, 2016. 

Heat Storage 

mechanism
Sensible Latent Thermochemical

Gravimetric energy 

density (kWh/kg)
0.02-0.03 0.05-0.1 0.5-1

Maturity Industrial (TRL 9) Pilot Scale (TRL 5)
Laboratory Scale 

(TRL 3)

Storage period
Limited by thermal 

losses

Limited by thermal 

losses
Effectively unlimited

Transport Small distances Small distances
Effectively unlimited 

distances

Technological 

complexity
Simple Moderate Complex

Drawbacks

• Energy loss over 

time

• Large material 

volumes

• Energy loss over 

time

• Poor thermal 

conductivity

• High capital 

costs

• Technical design 

challenges

Table 1: Comparison of heat storage options suitable for CSP [2]

https://energy.gov/


Thermochemical Energy Storage (TCES)

Fig. 3: Illustration of flow of heat in CaO/Ca(OH)2 TCES system
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Fig. 2: Mass energy storage density versus system turning 

temperature (surveyed systems for TCES) [2]

• CaO: Non-toxic

• Cheap, abundant

• Industrial familiarityEU SOCRATCES Pilot 

(ongoing)



Knowledge/Expertise Gaps

• Rigorous simulation capability for reaction flowsheet under TCES conditions

• Design and analysis of charging+discharging process within single plant

• Dynamic (real-world) simulation of TCES plant performance

• Techno-economic viability assessment of TCES+CSP combined plant
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Designed Flowsheets
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Key areas:

• Rigorous fluidized bed reactor 

simulation (AspenPlus V9)

• CaO/Ca(OH)2 Δdensity, Trxn, and 

potential parallel operation 

separate FBR designs

• Integrated power cycle

Fig. 4: Schematic of simulated flowsheets for charging (top) and 

discharging (bottom)



FBR Optimization
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Key observations:

• Longer reaction times in simulation

• Influenced by conservative kinetics 

data used here, adjusting for 

sintering and particle size changes

• Smaller solids inventories in simulation

• Partially due to different final reactor 

dimensions in each study

• Also influenced by choice of 

kinetics

• Overall results roughly comparable; 

simulation can be relied upon

Fig. 5: Comparison of key FBR and process parameters from 

literature [3] versus the results of this study

[3] Criado, et al., Applied Thermal Engineering, 2014
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Knowledge/Expertise Gaps (Recap)

 Rigorous simulation capability for reaction flowsheet under TCES conditions

 Design and analysis of charging+discharging process within single plant

• Dynamic (real-world) simulation of TCES plant performance

• Techno-economic viability assessment of TCES+CSP combined plant
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• Seville, Spain

• Among most highly irradiated sites 

globally (annual basis)

• Home to biggest CSP installations 

incentive for implementation

• Ample historical solar data available for 

analysis

Plant Case Study Location

Fig. 6: Historical solar irradiance data for Seville, Spain [4]
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[4] National Solar Radiation Database, NREL
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• Charging: not 24/7, only during daytime

• Discharging: 24/7? Only at night? What 

% of max load?

• 3 scenarios considered:

-S1: nighttime batchwise discharge

-S2: continuous discharge, 50%

-S3: continuous discharge, 75%

Dynamic Simulation Scenarios

Fig. 7: Charging and discharging loads of the CSP-TCES plant, 

operating in scenarios S1 (red), S2 (black), S3 (green) in a dynamic 

simulation
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Operating Scenario S1 S2 S3

Electricity Produced (GWh/y) 174 190 286

Operating Cost ($M/y) 15.9 16.5 16.8

LCOE ($/kWh) 0.091 0.087 0.059

Annual Energy Stored (GWh) 371 371 371

Plant efficiency (%) 47.0 51.3 76.9

LCOS ($/kWh) 0.043 0.044 0.045

Process Economics of Scenarios S1-S3

Table 1: Key techno-economic metrics for the CSP-TCES Plant across 

three operating scenarios
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Economic costing methodology adapted from 

Sieder et al [5]

• Electricity production directly dependent on 

discharge schedule

• Little influence of operating cost on LCOE or 

LCOS

• LCOE heavily influenced by discharge 

schedule

• In reality, plant will use a mix of S1-S3 over 

time

[5] Sieder, et al., 2009



CSP-TCES Levelized Cost of Electricity (LCOE)

Fig. 8: Comparison of expected LCOE of power generation 

technologies including solar with CSP-TCES [6]
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[6] Annual Energy Outlook 2019, US Energy Information Administration

• 3rd in terms of LCOE among both 

renewable and fossil fuel generation

• Current TRL is low  may become even 

cheaper (better power cycles, more 

reactive/stable synthetic materials)

• Standalone solar costs also likely to drop 

with CSP tech. advancements
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CSP-TCES Levelized Cost of Storage (LCOS)

Fig. 9: Comparison of expected LCOS of energy storage technologies 

including solar with CSP-TCES [7]
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• 2nd in terms of LCOS across heat and 

electricity storage means

• Competitive with battery storage (Li-ion, 

Vanadium) which is also developing fast

• More volume-efficient and transportable 

at large scales

[7] Schmidt, et al., Joule, 2019
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Next Steps Needed

• Pilot scale testing of reactor configurations (biggest obstacle)

• Development of more robust CaO-based material (synthetic, supported, composites, 

etc.) (major influence on economics as well as technical performance)

• Assessment of suitable power cycles and working fluids

• Tailoring operation schemes to suit sunlight-poor regions (UK)  energy trading
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Personal Current and Future Work

• Impact of plant location on techno-economic performance of process (next slide) [8]

• Discharge schedule matching to demand trends

• Exploration of analogous system involving higher T reactions (e.g. mixed metal oxides): 

suitable for other types of CSP systems
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[8] Global Solar Atlas, World Bank Group
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Reactor Choice
• Fluidized bed reactor (FBR) vs packed bed 

reactor (PBR) both used for fluid-solid reactions

• PBR:

+ simpler, cheaper operation

+ more complete reactions

• FBR:

+ greater thermal efficiency

+ thorough particle mixing

+ continuous operation possible

+ possibly better for scale-up

• FBRs not well-described in software packages, 

so only approximate studies in literature… until 

recently
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Fig. 10: Illustration of packed bed (left) and fluidized bed (right) 

reactors [9]

[9] Dept. of Chem. Eng., UMichigan



FBR Optimization (ext.)
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• Multi-variable optimization for bed 

masses, reactor dimensions, conversions 

done separately for charging and 

discharging

• Boundary conditions for residence times, 

reaction T, steady-state conversions 

established from literature and 1st year 

PhD work

• Results compared with analytical 

literature study

Fig. 11: Simulated trends in reaction system behavior within FBR for 

the discharging process, varying bed mass and reactor dimensions


