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Concentrated Solar Power (CSP) and Energy Storage
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Fig. 1: lllustration of a heliostat field design for concentrated solar ~ Ta 10 20 40 60 80100 200 400 800 1000

power without heat storage [1]
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[1] https://energy.gov
[2] L. Andre, S. Abanades and G. Flamant, Renewable and Sustainable Energy Reviews, 2016.
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Thermochemical Energy Storage (TCES)

Candidates for solar energy storage Oxides
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Fig. 2: Mass energy storage density versus system turning

Fig. 3: lllustration of flow of heat in CaO/Ca(OH), TCES system
temperature (surveyed systems for TCES) [2]
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Knowledge/Expertise Gaps

Rigorous simulation capability for reaction flowsheet under TCES conditions
Design and analysis of charging+discharging process within single plant

Dynamic (real-world) simulation of TCES plant performance

Techno-economic viability assessment of TCES+CSP combined plant
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Fig. 4: Schematic of simulated flowsheets for charging (top) and
discharging (bottom)
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FBR Optimization

274 M Simulation

Energy storage density (kWh/m?3) 260

Key observations: Thermal efficiency, n (%) H Analytical
« Longer reaction times in simulation {1deh] (5)
* Influenced by conservative kinetics tbyel ()

data used here, adjusting for

. . . ) Solids inventory [deh] (kg/m?)
sintering and patrticle size changes

Solids inventory [hyd] (kg/m?)

443
« Smaller solids inventories in simulation Qn (MW)
 Partially due to different final reactor Qoue (MW)
dimensions in each study 0 50 100 150 200 250 300 350 400 450 500
* Also influenced by choice of Fig. 5: Comparison of key FBR and process parameters from
kinetics literature [3] versus the results of this study

» Overall results roughly comparable;
simulation can be relied upon

[3] Criado, et al., Applied Thermal Engineering, 2014 :
UKES2019
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Knowledge/Expertise Gaps (Recap)

v" Rigorous simulation capability for reaction flowsheet under TCES conditions
v Design and analysis of charging+discharging process within single plant

*  Dynamic (real-world) simulation of TCES plant performance

«  Techno-economic viability assessment of TCES+CSP combined plant
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Plant Case Study Location

« Seville, Spain

«  Among most highly irradiated sites
globally (annual basis)

* Home to biggest CSP installations -
incentive for implementation

« Ample historical solar data available for

analysis

Beam irradiance (W/m?2)
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Fig. 6: Historical solar irradiance data for Seville, Spain [4]

[4] National Solar Radiation Database, NREL
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Dynamic Simulation Scenarios

. . . EAISO 1 (a) January E:SO T(b) April
« Charging: not 24/7, only during daytime %30 5300 -
T, iL, |
- Discharging: 24/7? Only at night? What =~ 2% o F—M—L/] 5% -
0 4 8 12 16 20 24 0 4 8 12 16 20 24
% Of max Ioad? Time of day (h) Time of day (h)
§A150 i (c) July %.AISO -(d) October
= 53
. ] o 2100 § S100
- 3 scenarios considered: TE, TE_ |
-S1: nighttime batchwise discharge 2k 2E

o

-S2: continuous discharge, 50% CE L 1 w0 u 04 Bl e 0w
-S3: continuous discharge, 75%
Fig. 7: Charging and discharging loads of the CSP-TCES plant,
operating in scenarios S1 (red), S2 (black), S3 (green) in a dynamic
simulation
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]

Process Economics of Scenarios S1-S3

Economic costing methodology adapted from ] ]
Sieder et al [5] Operating Scenario

Electricity Produced (GWhly) 174 190
» Electricity production directly dependent on .
: Operating Cost ($M/
discharge schedule Sl e -
LCOE ($/kwWh) 0.091  0.087
« Little influence of operating cost on LCOE or Annual Energy Stored (GWh)
LCOS
Plant efficiency (%)
* LCOE heavily influenced by discharge .
($/kWh)
schedule -

Table 1: Key techno-economic metrics for the CSP-TCES Plant across

. . . three operating scenarios
* Inreality, plant will use a mix of S1-S3 over

time

[5] Sieder, et al., 2009
&] UKES2019
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CSP-TCES Levelized Cost of Electricity (LCOE)

« 3'dinterms of LCOE among both Solar (with CSP-TCES) —— 59(4.9-6.8)
renewable and fossil fuel generation Solar
Hydro-electric
* Current TRL is low = may become even Biomass 9.2
cheaper (better power cycles, more Wind {onshore}
reactive/stable synthetic materials) Coal (90% CCS) 9.9
Combustion turbine
« Standalone solar costs also likely to drop Combined-cycle a7
with CSP tech. advancements LCOE (¢/kwh)

Fig. 8: Comparison of expected LCOE of power generation
technologies including solar with CSP-TCES [6]

[6] Annual Energy Outlook 2019, US Energy Information Administration 0% |~
6] UKES2019
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CSP-TCES Levelized Cost of Storage (LCOS)

. 2nd in terms of LCOS across heat and Solar (with CSP-TCES) —i 4.5(3.8-5.2)

electricity storage means Molten salt 1.1

Vanadium redox

« Competitive with battery storage (Li-ion,
Vanadium) which is also developing fast Li-ion

Flywheel
« More volume-efficient and transportable

P d hyd
at large scales Hmpeanvere

2.8

LCOS (¢/kWh)

Fig. 9: Comparison of expected LCOS of energy storage technologies
including solar with CSP-TCES [7]

[7] Schmidt, et al., Joule, 2019 -0 | =
6] UKES2019
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Next Steps Needed

« Pilot scale testing of reactor configurations (biggest obstacle)

- Development of more robust CaO-based material (synthetic, supported, composites,
etc.) (major influence on economics as well as technical performance)

« Assessment of suitable power cycles and working fluids

« Tailoring operation schemes to suit sunlight-poor regions (UK) = energy trading

EE;PUKESZOW
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Personal Current and Future Work

« Impact of plant location on techno-economic performance of process (next slide) [8]
« Discharge schedule matching to demand trends

- Exploration of analogous system involving higher T reactions (e.g. mixed metal oxides):
suitable for other types of CSP systems

Acknowledgements
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[8] Global Solar Atlas, World Bank Group
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Reactor Choice

Fluidized bed reactor (FBR) vs packed bed Gasomm‘/f 61“
reactor (PBR) both used for fluid-solid reactions I\
° PBR: Liguid Inlet | 1 Sol{‘ :' ¢
+ simpler, cheaper operation %ﬁ, L
+ more complete reactions A g 4 ©
. Packed Bed —— Gas b oble._ (;:}‘,J f} L': (@) f:‘{i:}
. R o NN
+ greater thermal efficiency gcﬁé"ﬁf
. .« . (@) Solid
+ thorough particle mixing Sold parte. f; i o Oc,:
+ continuous operation possible s Iy _ on e
H ‘- as — ™ Distributor
+ possibly better for scale-up © vkl i

— T =
Liquid Qutlet >} ’/

Fig. 10: lllustration of packed bed (left) and fluidized bed (right)
reactors [9]

. FBRs not well-described in software packages,
so only approximate studies in literature... until
recently

[9] Dept. of Chem. Eng., UMichigan 6 [~
6] UKES2019
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- Multi-variable optimization for bed _ 0 e
masses, reactor dimensions, conversions =% o
done separately for charging and J §§ s
d ISCh arg I n g 03000 5000 7000 9000

Bed Mass (kg)

« Boundary conditions for residence times, Gonversion vs reactor diameter,
reaction T, steady-state conversions cone R g T
established from literature and 15t year S R R
PhD work g o e

é 0.2

* Results compared with analytical Y

literature study ’ eacto domter (1) '
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Conversion vs Bed Mass,
constant reactor size and gas flowrate
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Fig. 11: Simulated trends in reaction system behavior within FBR for
the discharging process, varying bed mass and reactor dimensions
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